Portál AbcLinuxu, 4. května 2025 21:54
Souhlasim ...
p = mp / (k (ln p0 – ln (p0 -p)) p = mp / (k ln p0/(p0-p)) 1 = m / (k ( ln (p0/p0-p)) k ln (p0 / p0 -p ) = m ln (p0 / p0 - p) = m/k p0 / p0 -p = e ^ (m/k) p0 = e^(m/k) (p0 -p) p0 – p0 e^(m/k) = -p e^ (m/k) p = (p0 e^(m/k) – p0) / e^(m/k)rozdíl logaritmů je podíl logaritmovaných čísel, exponenciální úprava a definiční obor řešit. A je to celé.
p = p_0 - p_0/exp(m/k)
Řekl byc, že stejně, k/m a -1 dělaj svý.
Můžeš si za písmenka dosadit jejich ASCII hodnoty, takže třeba ln(x)
je 108 * 110 * (x) = 11880x
, což je jednoduché, ne?
Akorát autor nespecifikoval, v jakém kódóvání vzoreček je; jestli v ASCII či v EBCDIC. Třeba zrovna v tom EBCDIC to je 147 * 149 * x = 21903x
.
Pozdě, ale (přidávám se k důkazu davem) pro jistotu (a pro pivo?):
p = p0 * (e^(m/k) - 1) / e^(m/k)
Je tedy potvrzeno, že ti výše to mají správně.
Jenom jsem, blbec, zapomněl, co mám vyjádřit -- vyjádřil jsem p0.
Před 18 lety jsam neudělal přijímačky z fyxiky na MFF. Kdysi jsem papír s příkladama někde u sebe viděl. Až ho najdu, taky to zveřejnim.
Tiskni
Sdílej:
ISSN 1214-1267, (c) 1999-2007 Stickfish s.r.o.