Čínská společnost Tencent uvolnila svůj AI model HunyuanWorld-Voyager pro generování videí 3D světů z jednoho obrázku a určené trajektorie kamery. Licence ale nedovoluje jeho používání na území Evropské unie, Spojeného království a Jižní Koreje.
Blender Studio se spojilo s kapelou OK Go a výsledkem je videoklip k písni Impulse Purchase. Stejně jako samotný 3D software Blender je i ve videoklipu použitý animovaný chlápek open source. Kdokoli si jej může stáhnout a upravovat.
Zig Software Foundation stojící za programovacím jazykem Zig publikovala finanční zprávu za rok 2024. Současně s prosbou o finanční příspěvek.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za srpen (YouTube). Vypíchnuta je podpora Tabulek Google, implementace Gamepad API a Cookie Store API nebo také podpora WebGL na Linuxu.
openSUSE Leap 16, včetně Leap Micra 6.2+, nově nabízí 24 měsíců podpory pro každé vydání. To je dva roky aktualizací a stability, což z něj činí nejdéle podporovanou komunitní distribuci vůbec. Leap se tak stává ideální platformou pro všechny, kdo hledají moderní, stabilní a dlouhodobě podporovanou komunitní Linux distribuci.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) vydal dne 3. 9. 2025 VAROVÁNÍ před hrozbou v oblasti kybernetické bezpečnosti spočívající v předávání systémových a uživatelských dat do Čínské lidové republiky a ve vzdálené správě technických aktiv vykonávané z území Čínské lidové republiky. Varováním se musí zabývat povinné osoby podle zákona o kybernetické bezpečnosti.
Americká internetová společnost Google nemusí prodat svůj prohlížeč Chrome ani operační systém Android. Rozhodl o tom soud ve Washingtonu, který tak zamítl požadavek amerického ministerstva spravedlnosti. Soud ale firmě nařídil sdílet data s jinými podniky v zájmu posílení konkurence v oblasti internetového vyhledávání. Zároveň Googlu zakázal uzavírat dohody s výrobci mobilních a dalších zařízení, které by znemožňovaly
… více »Prvního září ozbrojení policisté zatkli na na londýnském letišti Heathrow scénáristu a režiséra Grahama Linehana, známého především komediálními seriály Ajťáci, Otec Ted nebo Black Books. Během výslechu měl 57letý Graham nebezpečně zvýšený krevní tlak až na samou hranici mrtvice a proto byl z policejní stanice převezen do nemocnice. Důvodem zatčení bylo údajné podněcování násilí v jeho 'vtipných' příspěvcích na sociální síti
… více »Studentská dílna Macgyver zve na další Virtuální Bastlírnu - pravidelné online setkání všech, kdo mají blízko k bastlení, elektronice, IT, vědě a technice. Letní prázdniny jsou za námi a je čas probrat novinky, které se přes srpen nahromadily. Tentokrát jich je více než 50! Těšit se můžete mimo jiné na:
Hardware – Bus Pirate na ESP32, reverse engineering Raspberry Pi, pseudo-ZX-80 na RISC-V, PicoCalc, organizéry na nářadí z pěny nebo … více »Google Chrome 140 byl prohlášen za stabilní. Nejnovější stabilní verze 140.0.7339.80 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 6 bezpečnostních chyb. Vylepšeny byly také nástroje pro vývojáře.
To sice jo, ale i dávno vyřešené věci někdy neuškodí prodiskutovat znova. Právě proto, že se řešily dávno.
pocitac: IBM p550-v lparu je dedikovan 1 dualcorovy p5+ procesor suse-tftp:/tmp/memtest # cat /proc/cpuinfo processor : 0 cpu : POWER5+ (gs) clock : 1648.350000MHz revision : 3.1 (pvr 003b 0301) processor : 1 cpu : POWER5+ (gs) clock : 1648.350000MHz revision : 3.1 (pvr 003b 0301) timebase : 512365000 machine : CHRP IBM,9133-55A suse-tftp:/tmp/memtest # cat /etc/SuSE-release SUSE Linux Enterprise Server 10 (ppc) VERSION = 10 g++ optimalizace: -Wall -O3 -pipe Average time: 33.70 bez optimalizace: Average time: 160.10
G++ (bez optimalizace) ----------------------- Standard memcpy() Average time: 45.90 Offset-driven copy test (bytes) Average time: 1713.40 Offset-driven copy test (ints) Average time: 583.30 Offset-driven copy test ('long long's) Average time: 218.60 Pointer-driven copy test (bytes) Average time: 1206.90 Pointer-driven copy test (ints) Average time: 265.40 Pointer-driven copy test ('long long's) Average time: 156.60 Special 'modulo' copy test (bytes) Average time: 1791.40 Special 'modulo' copy test (ints) Average time: 390.00 Special 'modulo' copy test ('long long's) Average time: 160.00 G++(-Wall -O3 -pipe) -------------------------- Standard memcpy() test Average time: 46.10 Offset-driven copy test (bytes) Average time: 250.80 Offset-driven copy test (ints) Average time: 128.30 Offset-driven copy test ('long long's) Average time: 39.20 Pointer-driven copy test (bytes) Average time: 252.10 Pointer-driven copy test (ints) Average time: 128.40 Pointer-driven copy test ('long long's) Average time: 39.20 Special 'modulo' copy test (bytes) Average time: 137.30 Special 'modulo' copy test (ints) Average time: 41.60 Special 'modulo' copy test ('long long's) Average time: 33.60
Je pro mě příjemným překvapením, že ta moje slátanina šla vůbec zkompilovat a spustit na jiné architektuře. Každopádně děkuji za velmi zajímavý výsledek. Knihovní memcpy je u Vás asi napsaná komplet v assembleru, když jí optimalizace škodí...
Pointer-driven copy test (ints) Average time: 128.40 Pointer-driven copy test ('long long's) Average time: 39.20
Promiňte mi hloupou otázku: Ten stroj je 64-bitový? Jinak si neumím vysvětlit tak velký nárůst rychlosti při použití long long...
G++ (bez optimalizace) ----------------------- Standard memcpy() Average time: 271.10 Offset-driven copy test (bytes) Average time: 867.70 Offset-driven copy test (ints) Average time: 262.10 Offset-driven copy test ('long long's) Average time: 180.90 Pointer-driven copy test (bytes) Average time: 814.60 Pointer-driven copy test (ints) Average time: 251.10 Pointer-driven copy test ('long long's) Average time: 182.20 Special 'modulo' copy test (bytes) Average time: 779.50 Special 'modulo' copy test (ints) Average time: 243.90 Special 'modulo' copy test ('long long's) Average time: 174.20
G++ (-O2 -march=athlon-xp -pipe -mcpu=i686 -fomit-frame-pointer -msse -mmmx -m3dnow -ffast-math -fprefetch-loop-arrays -finline-limit=600 -ftracer) ----------------------- Standard memcpy() Average time: 244.90 Offset-driven copy test (bytes) Average time: 998.20 Offset-driven copy test (ints) Average time: 287.40 Offset-driven copy test ('long long's) Average time: 198.60 Pointer-driven copy test (bytes) Average time: 896.50 Pointer-driven copy test (ints) Average time: 267.60 Pointer-driven copy test ('long long's) Average time: 190.10 Special 'modulo' copy test (bytes) Average time: 814.00 Special 'modulo' copy test (ints) Average time: 258.40 Special 'modulo' copy test ('long long's) Average time: 183.40
Překvapivé. U Vás není vítězem memcpy(). Jak je to možné?
To je divné. Týká se to dokonce i 32-bitových Athlonů, jak je vidět o kus níž. Jestli se používá často memcpy i v kernelu...
[andrej@xandrej linux]$ grep -R memcpy * | wc -l 9318
...tak to je potom smutné. Takže procesory AMD asi nejsou využité tak dobře, jak by mohly být.
Tak to abychom udělali vlastní fork kernelu :)
A ten by spočíval v rekurzivním průchodu stromem a nahrazení všech memcpy()
něčím jiným.
Zjistil jsem, že kernelu se případný problém netýká. Má totiž vlastní implementaci knihoven pro každou architekturu zvlášť. Kompilují se různé jejich části podle toho, jaké možnosti má cílový procesor. Je to k vidění například zde:
[andrej@popelnice linux]$ ls arch/i386/lib/mem* arch/i386/lib/memcpy.c [andrej@popelnice linux]$ ls arch/x86_64/lib/mem* arch/x86_64/lib/memcpy.S arch/x86_64/lib/memmove.c arch/x86_64/lib/memset.S
Používají se tam i poměrně nové sady instrukcí, takže uživatel může být klidný, že strhujícím výkonem jeho stroje nikdo neplýtvá
Je tu už i měření Michala Kubečka, kde memcpy()
na AMD s drtivou převahou vítězí.
1.-O0 2.-Os -march=athlon64 -msse3 -pipe 3.-O3 -march=athlon64 -msse3 -pipe 4.-O3 -march=athlon64 -mtune=athlon64 -msse3 -pipe -falign-functions=4 -fprefetch-loop-arrays -fomit-frame-pointer 1 2 3 4 Standard memcpy() test 192.80 150.60 56.30 54.90 Offset-driven copy test (bytes) 755.40 257.70 206.80 224.60 Offset-driven copy test (ints) 222.70 108.80 94.20 73.40 Offset-driven copy test ('long long's) 132.50 88.30 71.40 70.30 Pointer-driven copy test (bytes) 707.80 207.20 204.30 224.60 Pointer-driven copy test (ints) 213.30 96.00 97.80 68.30 Pointer-driven copy test ('long long's) 128.30 76.20 73.20 66.40 Special 'modulo' copy test (bytes) 671.00 141.70 146.30 146.10 Special 'modulo' copy test (ints) 206.20 87.40 83.90 83.60 Special 'modulo' copy test ('long long's) 124.80 75.00 71.50 70.80
Těch 10 běhů je asi málo.
Taky se tu nesnažíme o nějakou velkou přesnost. Funkce
test_run()
má parametr repeat
, kterým lze počet běhů nastavit. Taky jsem musel vypnout ondemand.
Překvapuje mě, že na AMD64 není memcpy()
vítězem. Není tam náhodou 32-bitový kernel nebo alespoň 32-bitové knihovny? To by bylo jediné možné vysvětlení, proč může být tento kód rychlejší než memcpy()
.
ldd test libstdc++.so.6 => /usr/lib/gcc/x86_64-pc-linux-gnu /4.1.2/libstdc++.so.6 (0x00002b3c41d78000) libm.so.6 => /lib/libm.so.6 (0x00002b3c41f76000) libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00002b3c420cb000) libc.so.6 => /lib/libc.so.6 (0x00002b3c421d9000) /lib64/ld-linux-x86-64.so.2 (0x00002b3c41c5b000)
1.-O0 2.-O2 -march=athlon-xp -pipe -fomit-frame-pointer -msse -mmmx -m3dnow -ffast-math -fprefetch-loop-arrays -finline-limit=600 -ftracer 3.-Os -march=athlon-xp -pipe 4.-O3 -march=athlon-xp -pipe 1 2 3 4 Standard memcpy() test 220.70 163.90 169.10 164.10 Offset-driven copy test (bytes) 964.70 319.50 288.20 266.60 Offset-driven copy test (ints) 288.20 127.00 174.90 185.40 Offset-driven copy test ('long long's) 218.90 145.70 144.00 145.70 Pointer-driven copy test (bytes) 915.90 286.50 296.90 266.50 Pointer-driven copy test (ints) 274.60 133.60 176.40 165.60 Pointer-driven copy test ('long long's) 217.70 145.20 163.90 145.00 Special 'modulo' copy test (bytes) 868.50 242.10 226.70 227.40 Special 'modulo' copy test (ints) 258.00 163.60 164.40 156.60 Special 'modulo' copy test ('long long's) 218.70 144.30 143.00 144.30
Ale tohle je 32-bitový stroj, že jo? Takže to s tím memcpy()
je fakt záhada. Připadá mi, jako by tvůrci knihoven věnovali víc pozornosti Intelu na úkor AMD. Ani v jednom případě není memcpy()
vítězem. To je do očí bijící rozdíl. V procesorech AMD se skrývá nějaký tajemný nevyužitý potenciál.
CXXFLAGS='-march=k8 -m64 -O3 -fomit-frame-pointer'
) je na Athlon64 3500+ memcpy()
zřetelně nejrychlejší (kolem 40), pak následují všechny verze používající typ long long
(77-78).
Nejspíš má tedy problém jen některá verze na některých strojích. Nechtělo se mi věřit, že by byla opravdu memcpy()
obecně pro AMD pomalá. Už přece musely proběhnout tisíce benchmarků, mnohem podrobnějších a přesnějších než ten můj. (A kdyby se na něco takového přišlo, bylo by to už před lety v knihovnách opraveno.) I tak jsou výsledky zajímavé.
Hádejte, kdy ten můj benchmark hodí segmentation fault!
Stane se to tehdy, když uděláte na Intelu spccpy< long double >()
. Napřed se mi to zdálo podivné, ale počítač má vždycky pravdu:
Jest totiž sizeof( long double ) == 12
. (Pentium M, Linux, GCC) Dále jest MEMSIZE / 12 == 8333333
, což zjevně není násobkem osmi. Proto v tom while cyklu podteče proměnná bytes
do velkých čísel. Je totiž bezznaménková.
Jsou dvě možnosti řešení:
Nastavit si MEMSIZE = 120000000u
. Pak bude MEMSIZE / 12
násobkem 8
.
Nikdy nepoužívat unsigned proměnnou jako řídící proměnnou cyklu. Tuto poučku jsem stokrát slyšel, stokrát porušil a stokrát jsem si nabil nos.
Blogpost raději ponechávám v původní podobě, protože většina lidí nebude chtít testovat dvanáctibytové datové typy. Navíc bych tím znehodnotil výsledky, které mi tu už někteří z vás ochotně napsali.
Testoval jsem důkladně rychlost kopírování v plovoucí rádové čárce. Zdá se mi, že na procesorech Intel v tom vůbec není rozdíl. Jediné, co hraje roli, je velikost proměnné. Procesory Intel totiž mají univerzální registry pro různé typy dat. Možná by ale na jiném procesoru byla situace jiná. S upraveným MEMSIZE mám takovouhle funkci main():
int main( void ) { struct memcpy_test tests[ 19 ]; tests[ 0 ].test_name = "Standard memcpy() test"; tests[ 0 ].memcpy_function = std_memcpy; tests[ 1 ].test_name = "Offset-driven copy test (bytes)"; tests[ 1 ].memcpy_function = func_type( pluscpy, char ); tests[ 2 ].test_name = "Offset-driven copy test (ints)"; tests[ 2 ].memcpy_function = func_type( pluscpy, int ); tests[ 3 ].test_name = "Offset-driven copy test ('long long's)"; tests[ 3 ].memcpy_function = func_type( pluscpy, long long ); tests[ 4 ].test_name = "Pointer-driven copy test (bytes)"; tests[ 4 ].memcpy_function = func_type( endcpy, char ); tests[ 5 ].test_name = "Pointer-driven copy test (ints)"; tests[ 5 ].memcpy_function = func_type( endcpy, int ); tests[ 6 ].test_name = "Pointer-driven copy test ('long long's)"; tests[ 6 ].memcpy_function = func_type( endcpy, long long ); tests[ 7 ].test_name = "Special 'modulo' copy test (bytes)"; tests[ 7 ].memcpy_function = func_type( spccpy, char ); tests[ 8 ].test_name = "Special 'modulo' copy test (ints)"; tests[ 8 ].memcpy_function = func_type( spccpy, int ); tests[ 9 ].test_name = "Special 'modulo' copy test ('long long's)"; tests[ 9 ].memcpy_function = func_type( spccpy, long long ); tests[ 10 ].test_name = "Offset-driven copy test (floats)"; tests[ 10 ].memcpy_function = func_type( pluscpy, float ); tests[ 11 ].test_name = "Offset-driven copy test (doubles)"; tests[ 11 ].memcpy_function = func_type( pluscpy, double ); tests[ 12 ].test_name = "Offset-driven copy test ('long double's)"; tests[ 12 ].memcpy_function = func_type( pluscpy, long double ); tests[ 13 ].test_name = "Pointer-driven copy test (floats)"; tests[ 13 ].memcpy_function = func_type( endcpy, float ); tests[ 14 ].test_name = "Pointer-driven copy test (doubles)"; tests[ 14 ].memcpy_function = func_type( endcpy, double ); tests[ 15 ].test_name = "Pointer-driven copy test ('long double's)"; tests[ 15 ].memcpy_function = func_type( endcpy, long double ); tests[ 16 ].test_name = "Special 'modulo' copy test (floats)"; tests[ 16 ].memcpy_function = func_type( spccpy, float ); tests[ 17 ].test_name = "Special 'modulo' copy test (doubles)"; tests[ 17 ].memcpy_function = func_type( spccpy, double ); tests[ 18 ].test_name = "Special 'modulo' copy test ('long doubles's)"; tests[ 18 ].memcpy_function = func_type( spccpy, long double ); if ( !test_alloc( MEMSIZE ) ) { return 1; }; test_run( tests, 19, 10 ); test_free(); return 0; }
Nemyslím si, že požívat unsigned
proměnnou v řídící části cyklu je hřích. Naopak, ve chvíli, kdy přičítáte, my přijde jako velice vhodné přičítat do unsigned
. Při odčítání je to ale jiná káva.
Linux album 2.6.21-gentoo-r2 #1 PREEMPT Fri May 25 11:39:18 CEST 2007 i686 AMD Duron(tm) processor AuthenticAMD GNU/Linux gcc (GCC) 4.1.2 (Gentoo 4.1.2) 1. g++ -Wall -O0 2. g++ -Wall -march=athlon-tbird -O3 -pipe -fomit-frame-pointer 1. 2. Standard memcpy() test 660.30 386.80 Offset-driven copy test (bytes) 1882.60 736.00 Offset-driven copy test (ints) 688.90 377.30 Offset-driven copy test ('long long's) 671.00 352.60 Pointer-driven copy test (bytes) 1849.40 734.00 Pointer-driven copy test (ints) 795.90 378.70 Pointer-driven copy test ('long long's) 637.10 365.00 Special 'modulo' copy test (bytes) 1790.80 698.80 Special 'modulo' copy test (ints) 795.10 366.40 Special 'modulo' copy test ('long long's) 667.40 363.50Není to tak zřetelné, ale memcpy také propadá.
Tiskni
Sdílej: