abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×

24.6. 01:23 | Komunita

Phoronix spustil 2017 Linux Laptop Survey. Tento dotazník s otázkami zaměřenými na parametry ideálního notebooku s Linuxem lze vyplnit do 6. července.

Ladislav Hagara | Komentářů: 2
23.6. 22:44 | Nová verze

Po třech měsících vývoje od vydání verze 5.5.0 byla vydána verze 5.6.0 správce digitálních fotografií digiKam (digiKam Software Collection). Do digiKamu se mimo jiné vrátila HTML galerie a nástroj pro vytváření videa z fotografií. V Bugzille bylo uzavřeno více než 81 záznamů.

Ladislav Hagara | Komentářů: 1
23.6. 17:44 | Nová verze

Byla vydána verze 9.3 open source alternativy GitHubu, tj. softwarového nástroje s webovým rozhraním umožňujícího spolupráci na zdrojových kódech, GitLab. Představení nových vlastností v příspěvku na blogu a na YouTube.

Ladislav Hagara | Komentářů: 3
23.6. 13:53 | Nová verze

Simon Long představil na blogu Raspberry Pi novou verzi 2017-06-21 linuxové distribuce Raspbian určené především pro jednodeskové miniaturní počítače Raspberry Pi. Společně s Raspbianem byl aktualizován také instalační nástroj NOOBS (New Out Of the Box Software). Z novinek lze zdůraznit IDE Thonny pro vývoj v programovacím jazyce Python a především offline verzi Scratche 2.0. Ten bylo dosud možné používat pouze online. Offline bylo možné používat pouze Scratch ve verzi 1.4. Z nového Scratchu lze ovládat také GPIO piny. Scratch 2.0 vyžaduje Flash.

Ladislav Hagara | Komentářů: 1
22.6. 14:24 | Nová verze

Opera 46, verze 46.0.2597.26, byla prohlášena za stabilní. Nejnovější verze tohoto webového prohlížeče je postavena na Chromiu 59. Z novinek lze zmínit například podporu APNG (Animated Portable Network Graphics). Přehled novinek pro vývojáře na blogu Dev.Opera. Oznámení o vydání zmiňuje také první televizní reklamu.

Ladislav Hagara | Komentářů: 0
22.6. 13:37 | IT novinky

I čtenáři AbcLinuxu před dvěma lety vyplňovali dotazníky věnované Retro ThinkPadu. Nyní bylo potvrzeno, že iniciativa Retro ThinkPad je stále naživu a Lenovo připravuje speciální edici ThinkPadu jako součást oslav jeho 25. výročí.

Ladislav Hagara | Komentářů: 28
22.6. 10:22 | Komunita

Bylo oznámeno, že frontend a runtime programovacího jazyka D bude začleněn do kolekce kompilátorů GCC (GNU Compiler Collection). Správcem byl ustanoven Iain Buclaw.

Ladislav Hagara | Komentářů: 7
21.6. 18:47 | IT novinky
Bulharská firma Olimex je známá jako výrobce kvalitních mini arm desek, u nichž se snaží být maximálně open source. Kromě velké otevřenosti taktéž zaručují dlouhodobou podporu výroby, což je vítáno ve firemním prostředí. Nyní firma ohlásila ESP32-GATEWAY, malou IoT desku s Wifi, Bluetooth, Ethernetem a 20 GPIO porty za 22EUR. Tato malá deska je ořezanou verzí ESP32-EVB.
Max | Komentářů: 21
21.6. 18:00 | Zajímavý článek

LinuxGizmos (v dubnu loňského roku přejmenován na HackerBoards a v lednu letošního roku zpět na LinuxGizmos) zveřejnil výsledky čtenářské ankety o nejoblíbenější jednodeskový počítač (SBC) v roce 2017. Letos se vybíralo z 98 jednodeskových počítačů (Tabulky Google). Nejoblíbenějšími jednodeskovými počítači v letošním roce jsou Raspberry Pi 3 Model B, Raspberry Pi Zero W a Raspberry Pi 2 Model B.

Ladislav Hagara | Komentářů: 0
21.6. 14:22 | Pozvánky

Ne-konference jOpenSpace 2017 se koná od 13. do 15. října 2017 v hotelu Farma u Pelhřimova. Registrace účastníků je nutná. Více informací na stránkách ne-konference.

Zdenek H. | Komentářů: 0
Chystáte se pořídit CPU AMD Ryzen?
 (6%)
 (31%)
 (1%)
 (9%)
 (44%)
 (9%)
Celkem 837 hlasů
 Komentářů: 65, poslední 1.6. 19:16
    Rozcestník

    Dotaz: Algoritmus pro vyhledání nejkratší vzdálenosti

    8.7.2009 13:45 Deleted [8409] | skóre: 14 | blog: darkblog
    Algoritmus pro vyhledání nejkratší vzdálenosti
    Přečteno: 1228×

    Ahoj,

    nevím jak efektivně řešit tento problém. Mám pole bodů, a potřeboval bych funkci, která by co nejefektivněji našla nejkratší vzdálenost pro danou pozici. Naprosto triviálně to lze řešit lineárním prohledáváním, ale to je z hlediska výkonu nepoužitelné. Pro lepší porozumění předložím malý prototyp, kterým bych chtěl lépe vysvětlit, o co mi jde:

    struct DistancePoint
    {
      double x, y;
    };
    
    struct DistanceFinder
    {
      DistanceFinder();
      ~DistanceFinder();
    
      bool init(const DistancePoint* p, int count);
      void free();
      double find(double inX, double inY);
      void findSpan(double x, double y, int count, double* results);
    
      DistancePoint* _data;
      int _count;
    };
    
    DistanceFinder::DistanceFinder() :
      _data(NULL)
    {
    }
    
    DistanceFinder::~DistanceFinder()
    {
      free();
    }
    
    bool DistanceFinder::init(const DistancePoint* p, int count)
    {
      free();
      if (!count) return false;
    
      _data = (DistancePoint*)malloc(count * sizeof(DistancePoint));
      if (!_data) return false;
    
      memcpy(_data, p, count * sizeof(DistancePoint));
      return true;
    }
    
    void DistanceFinder::free()
    {
      if (_data) { ::free(_data); _data = NULL; }
    }
    
    double DistanceFinder::find(double x, double y)
    {
      double dist = fabs((_data[0].x - x) * (_data[0].y - y));
    
      for (int i = 1; i < _count; i++)
      {
        double d = fabs((_data[i].x - x) * (_data[i].y - y));
        if (dist > d) dist = d;
      }
    
      return sqrt(dist);
    }
    
    

    a teď stručně charakteristiku a pár typů k optimalizaci:

    • množství bodů se po initializaci nebude měnit, init() tedy má možnost vytvořit a inicializovat další datové struktury potřebné k hledání (binární stromy, atd).
    • protože to chci použít v počítačové grafice, jedna z optimalizací může využít fakt, že budu potřebovat hledat vždy pozice, které mají stejnou Y souřanici a na ose X budu přičítat 1.0.
    optimalizace tedy může využít potřeby pro tuto funkci:
    void DistanceFinder::findSpan(double x, double y, int count, double* results)
    {
      for (int i = 0; i < count; i++, x += 1.0) 
        results[i] = find(x, y);
    }
    

    Tak co, věděl by někdo, jakým směrem mám jít? Potřeboval bych vědět, jaké nejlepší datové struktury a algoritmy volit pro vytvoření dat, které použiju k efektivnímu vyhledání. Budu používat metodu findSpan(), takže samotná find() není vůbec důležitá.

    Chtěl bych to použít na generování podobných obrázků jako tyto.

    Odpovědi

    8.7.2009 14:33 saslik
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Jako trivialni reseni se  mi jevi, ze bych si nad mnozinou bodu vytvoril dva indexy dle souradnic x a y a s jejich pouzitim pak hledal metodou okenka. Napr. nejprve v kruznici o polomeru a, pak a*1,5 apod. Inspiraci pro lepsi reseni mohou byt struktury jako quadtree nebo R-tree.

    stativ avatar 8.7.2009 14:53 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
    Já bych z toho vytvořil váhovou matici sousednosti přičemž bych předpokládal, že body tvoří úplný graf (všechny jsou spojeny se všema) a pak zkusil třeba Dijkstru nebo Floyda.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    8.7.2009 15:29 petr_p | skóre: 59 | blog: pb
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Matice sousednosti vytvoří kvadratické množství hran. Dijkstra má složitost O(E+V.log(V)), tedy složitost by byla kvadratická. To naivní prohledání je lineární ;)

    Navíc Dijkstra je moc obecný. Tady si můžeme dovolit počítat s tím, že vzdálenosti bodů respektují topologii (tedy pokud se pohybujeme v Euklidovském prostoru). Například navržené kvarterní stromy jsou použitelné (používá to třeba Google na svých mapách).

    Ono obecně hledání ve vícerozměrných strukturách je ošklivé a moc se toho nedá ulehčit. Většina GISových algoritmů předpokládá nějaké zjednodušení, které umožní preferovat jeden směr (třeba autor říká, že bude hledat jen ve směru osy), na kterém se vybuduje efektivní vyhledávací struktura a vedlejší veličiny se pak už neohrabaným způsobem navěsí na její listy.

    8.7.2009 15:01 Radek Miček | skóre: 23 | blog: radekm_blog
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Nevím, jestli jsem to dobře pochopil. Máš neprázdnou množinu bodů M a úsečku mezi body [a, y] a [b, y], kde a<b. A pro určité body úsečky [z, y] chceš určit vzdálenost k nejbližšímu bodu z množiny M?

    Budu předpokládat (možná špatně), že tě zajímají pouze vybrané hodnoty y např. 0, 1, 2, 3, ... A těch hodnot, které tě zajímají není mnoho. Potom pro každé y, které tě zajímá, můžeš spočítat intervaly na ose x [u1, u2], [u2, u3], [u3, u4],... takové, že pro každý bod [x,y], kde x je z intervalu [u(i), u(i+1)], bude nejbližší bod p(i).

    Příklad: Tedy pokud máš množinu M se dvěma body p(1)=[0, 1] a p(2)=[2, 1], a zajímá tě y=0, pak si předem spočítáš intervaly [-nekonečno, 1], [1, nekonečno] a pro každou úsečku mající y=0 víš, že pro každý bod s x <= 1 je nejbližší bod p(1) a pro x >= 1 je nejbliží bod vždy p(2).

    Tedy časová složitost je pro celou úsečku O(log n +count). Předzpracování nepočítám.

    8.7.2009 15:46 volca
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Podle me by mohl pomoci vyvazeny BSP strom. Liche body budou rezat 2d prostor horizontalne, sude vertikalne. Find potom bude traverzovat podle uzlu, vzdy vybere tu polovinu prostoru na ktere sedi hledany bod (a zapamatuje nejkratsi vzdalenost) - body v druhe polovine prostoru jsou urcite dal.

    Jde jen o to vyvazit ten BSP strom, aby v kazdem uzlu byla velikost obou vetvi srovnatelna.

    8.7.2009 16:05 volca
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    A sakra, jak ted o tom premyslim tak by to nefungovalo. Ty delici primky musi byt v polovine mezi dvema body, nikoli skrze body samotne...

    AraxoN avatar 8.7.2009 16:14 AraxoN | skóre: 45 | blog: slon_v_porcelane | Košice
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    BSP podľa osí ma tiež napadlo ako prvé, ale nerieši to podmienku najmenšej vzdialenosti od hľadaného bodu.

    Dotaz ma ale inšpiroval do tej miery, že idem kúpiť pravítko, trojuholník, ceruzky, kružidlo a papiere a večer nad tým budem bádať :-D

    A fine is a tax for doing wrong. A tax is a fine for doing well.
    8.7.2009 16:27 volca
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Hodne stesti :)

    Podle me to podle os nepujde, ale pujde to jako kolmice na spojnici dvou bodu v jejim stredu (ekvidistanta tech dvou bodu). Ta primka potom opravdu deli prostor na body blize bodu A a/nebo B. To vyvazovani by slo bud brute-force, tim ze se najde takova dvojice, jejiz delici cara produkuje pomer bodu na obou stranach co nejblizsi jednicce, nebo by mozna sel ten strom i zoptimalizovat po naivnim vybudovani - to vyvazovani bude obecne vetsi problem nez vystaveni toho stromu jako takoveho - coz je celkem jednoducha operace.

    Co se tyce toho dotazu, tam je zajimave ze by mozna slo snadno zoptimalizovat prochazeni tim, ze se bude predavat cela mnozina bodu (ve forme usecky). Usecka se potom bude delit ve dvi v kazdem uzlu - vzniknou segmenty se stejnou prislusnosti k nejblizsimu bodu po protlaceni vsech segmentu do listu :)

    AraxoN avatar 8.7.2009 16:36 AraxoN | skóre: 45 | blog: slon_v_porcelane | Košice
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Operácia zistenia toho, na ktorej strane priamky leží bod je (ak si dobre pamätám) triviálna - dosadia sa súradnice bodu do rovnice priamky ax+by+c a ak je výsledok kladný, tak to leží na jednej strane (ľavý podstrom), ak záporný tak na druhej (pravý podstrom) a ak rovný nule, tak bod leží na priamke (to by sa priradilo ku jednému z podstromov). Takže by z hľadiska výpočtovej zložitosti ani veľmi nevadilo, že priestor nebude delený podľa osí X a Y...

    A fine is a tax for doing wrong. A tax is a fine for doing well.
    9.7.2009 07:50 volca
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Tak po dalsim zamysleni musim odvrhnout myslenku ze to jde po segmentech - kazdy bod se musi resit zvlast. Podle os to samozrejme lze taky resit (kd-tree), ten prohledavaci algoritmus zkratka hleda nejkratsi bod do hloubky a neprechazi prez rozdelujici primku co je dal nez aktualni nejlepsi kandidat...

    AraxoN avatar 9.7.2009 09:42 AraxoN | skóre: 45 | blog: slon_v_porcelane | Košice
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Tu nižšie v diskusii je odkaz na wikipediu (Voronoi diagram) a sú k tomu aj algoritmy. Spomína sa tam zložitosť O(n.log(n)), čo mi pripadá o dosť lepšie než to nad čím som uvažoval ja :-( ... ale aspoň som sa trochu precvičil v rysovaní a som zásobený písacími pomôckami na 10 rokov dopredu! :-D

    A fine is a tax for doing wrong. A tax is a fine for doing well.
    8.7.2009 16:43 xnov22
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
    8.7.2009 17:27 Ivan
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    Hmm nevim jestli je to pro tvoji ulohu optimalni alg. Ale predtav si nasledujici situaci:

    1. mame nakonecne veliky ctverec(koren stromu)

    2. Vlozime do nej jeden bod -> ctverec se rozdeli na 4 pod-ctverce. Tyto pod-ctvrce jsou synove korene.

    3. Mame dalsi bod. Projdeme koren, najdeme spravneho syna, a do nej vlozime dalsi bod a rozdelime ho na 4 syny

    Pokud svoje body rozume nahodne zamichas, tak dostanes strom, ktery projdes log. case. Podobny alg. se pouziva pro reprezentaci map, akorat se misto bodu pouzivaji usecky.

    Ivan

     

     

    8.7.2009 18:48 petr_p | skóre: 59 | blog: pb
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
    A říká se tomu kvarterní strom.
    9.7.2009 09:53 tomfi | skóre: 19
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

    A není právě řešení toho problému to co je na tom nejlepší, nejzáživnější? ... samotné naprogramování už je pak nuda.

    Vždyť jsou to jen jedničky a nuly ...
    9.7.2009 14:34 Deleted [8409] | skóre: 14 | blog: darkblog
    Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
    Takže díky všem za reakce. Něco jsem zkoušel, ale zdá se mi, že chci řešit problém jiným způsobem, než by se měl řešit. Chci generovat výplň, která je definovaná jako grafická cesta (v GDI+ je to PathGradientBrush), tak mě napalo vygenerovat body té cesty, pak hledat ten nejbližší a podle toho přiřadit pixelu barvu (podle gradient lut tabulky). Jenže tento způsob je asi overkill a řešit se to dá pomocí trojúhelníků.

    Jinak pomocí nejkratší vzdálenosti se mi líbí ty Voronoi diagramy, myslím, že by to krásně sedlo na hledání pole hodnot, ale stejně to budu řešit s největší pravděpodobností pomocí těch trojúhelníků.

    Kdyby někdo věděl i jiný způsob, rád se nechám poučit. Kdybych měl upřesnit problém, tak já hledám nejkratší vzdálenost k úsečkám (tedy grafické cestě složené z úseček), ale měl jsem pocit, že jednodušší by bylo převést to na body a jen hledat nejkratší vsdálenosti k nim.

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.