abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
eParkomat, startup z ČR, postoupil mezi finalisty evropského akcelerátoru ChallengeUp!
Robot na pivo mu otevřel dveře k opravdovému byznysu
Internet věcí: Propojený svět? Už se to blíží...
včera 16:38 | Komunita

Byly zveřejněny videozáznamy přednášek a workshopů z letošní konference OpenAlt konané 5. a 6. listopadu v Brně. K videozáznamům lze přistupovat ze stránky na SuperLectures nebo přes program konference, detaily o vybrané přednášce nebo workshopu a dále kliknutím na ikonku filmového pásu. Celkově bylo zpracováno 65 hodin z 89 přednášek a workshopů.

Ladislav Hagara | Komentářů: 0
včera 11:30 | Komunita

Bylo oznámeno, že bude proveden bezpečnostní audit zdrojových kódů open source softwaru pro implementaci virtuálních privátních sítí OpenVPN. Audit provede Matthew D. Green (blog), uznávaný kryptolog a profesor na Univerzitě Johnse Hopkinse. Auditována bude verze 2.4 (aktuálně RC 1, stabilní verze je 2.3.14). Audit bude financován společností Private Internet Access [reddit].

Ladislav Hagara | Komentářů: 2
včera 06:00 | Komunita

Na YouTube byl publikován Blender Institute Reel 2016, ani ne dvouminutový sestřih z filmů, které vznikly za posledních 10 let díky Blender Institutu. V institutu aktuálně pracují na novém filmu Agent 327. Dění kolem filmu lze sledovat na Blender Cloudu. Videoukázka Agenta 327 z června letošního roku na YouTube.

Ladislav Hagara | Komentářů: 0
včera 01:02 | Zajímavý článek

Minulý týden byly vydány verze 1.2.3 a 1.1.7 webového poštovního klienta Roundcube. V oznámení o vydání bylo zmíněno řešení bezpečnostního problému nalezeného společností RIPS a souvisejícího s voláním funkce mail() v PHP. Tento týden byly zveřejněny podrobnosti. Útočník mohl pomocí speciálně připraveného emailu spustit na serveru libovolný příkaz. Stejně, jak je popsáno v článku Exploit PHP’s mail() to get remote code execution z roku 2014.

Ladislav Hagara | Komentářů: 1
8.12. 16:00 | Nová verze

Byla vydána verze 0.98 svobodného nelineárního video editoru Pitivi. Z novinek lze zmínit například přizpůsobitelné klávesové zkratky. Videoukázka práce s nejnovější verzí Pitivi na YouTube.

Ladislav Hagara | Komentářů: 1
8.12. 15:00 | Zajímavý software

Stop motion je technika animace, při níž je reálný objekt mezi jednotlivými snímky ručně upravován a posouván o malé úseky, tak aby po spojení vyvolala animace dojem spojitosti. Jaký software lze pro stop motion použít na Linuxu? Článek na OMG! Ubuntu! představuje Heron Animation. Ten bohužel podporuje pouze webové kamery. Podpora digitálních zrcadlovek je začleněna například v programu qStopMotion.

Ladislav Hagara | Komentářů: 5
7.12. 21:21 | Nová verze Ladislav Hagara | Komentářů: 0
7.12. 11:44 | Zajímavý projekt

Na Indiegogo byla spuštěna kampaň na podporu herní mini konzole a multimediálního centra RetroEngine Sigma od Doyodo. Předobjednat ji lze již od 49 dolarů. Požadovaná částka 20 000 dolarů byla překonána již 6 krát. Majitelé mini konzole si budou moci zahrát hry pro Atari VCS 2600, Sega Genesis nebo NES. Předinstalováno bude multimediální centrum Kodi.

Ladislav Hagara | Komentářů: 2
7.12. 00:10 | Nová verze

Byla vydána verze 4.7 redakčního systému WordPress. Kódové označením Vaughan bylo vybráno na počest americké jazzové zpěvačky Sarah "Sassy" Vaughan. Z novinek lze zmínit například novou výchozí šablonu Twenty Seventeen, náhledy pdf souborů nebo WordPress REST API.

Ladislav Hagara | Komentářů: 10
6.12. 12:00 | Zajímavý projekt

Projekt Termbox umožňuje vyzkoušet si linuxové distribuce Ubuntu, Debian, Fedora, CentOS a Arch Linux ve webovém prohlížeči. Řešení je postaveno na projektu HyperContainer. Podrobnosti v často kladených dotazech (FAQ). Zdrojové kódy jsou k dispozici na GitHubu [reddit].

Ladislav Hagara | Komentářů: 28
Kolik máte dat ve svém domovském adresáři na svém primárním osobním počítači?
 (32%)
 (24%)
 (29%)
 (7%)
 (5%)
 (3%)
Celkem 808 hlasů
 Komentářů: 50, poslední 29.11. 15:50
Rozcestník
Reklama

Dotaz: Algoritmus pro vyhledání nejkratší vzdálenosti

8.7.2009 13:45 Deleted [8409] | skóre: 14 | blog: darkblog
Algoritmus pro vyhledání nejkratší vzdálenosti
Přečteno: 1214×

Ahoj,

nevím jak efektivně řešit tento problém. Mám pole bodů, a potřeboval bych funkci, která by co nejefektivněji našla nejkratší vzdálenost pro danou pozici. Naprosto triviálně to lze řešit lineárním prohledáváním, ale to je z hlediska výkonu nepoužitelné. Pro lepší porozumění předložím malý prototyp, kterým bych chtěl lépe vysvětlit, o co mi jde:

struct DistancePoint
{
  double x, y;
};

struct DistanceFinder
{
  DistanceFinder();
  ~DistanceFinder();

  bool init(const DistancePoint* p, int count);
  void free();
  double find(double inX, double inY);
  void findSpan(double x, double y, int count, double* results);

  DistancePoint* _data;
  int _count;
};

DistanceFinder::DistanceFinder() :
  _data(NULL)
{
}

DistanceFinder::~DistanceFinder()
{
  free();
}

bool DistanceFinder::init(const DistancePoint* p, int count)
{
  free();
  if (!count) return false;

  _data = (DistancePoint*)malloc(count * sizeof(DistancePoint));
  if (!_data) return false;

  memcpy(_data, p, count * sizeof(DistancePoint));
  return true;
}

void DistanceFinder::free()
{
  if (_data) { ::free(_data); _data = NULL; }
}

double DistanceFinder::find(double x, double y)
{
  double dist = fabs((_data[0].x - x) * (_data[0].y - y));

  for (int i = 1; i < _count; i++)
  {
    double d = fabs((_data[i].x - x) * (_data[i].y - y));
    if (dist > d) dist = d;
  }

  return sqrt(dist);
}

a teď stručně charakteristiku a pár typů k optimalizaci:

  • množství bodů se po initializaci nebude měnit, init() tedy má možnost vytvořit a inicializovat další datové struktury potřebné k hledání (binární stromy, atd).
  • protože to chci použít v počítačové grafice, jedna z optimalizací může využít fakt, že budu potřebovat hledat vždy pozice, které mají stejnou Y souřanici a na ose X budu přičítat 1.0.
optimalizace tedy může využít potřeby pro tuto funkci:
void DistanceFinder::findSpan(double x, double y, int count, double* results)
{
  for (int i = 0; i < count; i++, x += 1.0) 
    results[i] = find(x, y);
}

Tak co, věděl by někdo, jakým směrem mám jít? Potřeboval bych vědět, jaké nejlepší datové struktury a algoritmy volit pro vytvoření dat, které použiju k efektivnímu vyhledání. Budu používat metodu findSpan(), takže samotná find() není vůbec důležitá.

Chtěl bych to použít na generování podobných obrázků jako tyto.

Odpovědi

8.7.2009 14:33 saslik
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Jako trivialni reseni se  mi jevi, ze bych si nad mnozinou bodu vytvoril dva indexy dle souradnic x a y a s jejich pouzitim pak hledal metodou okenka. Napr. nejprve v kruznici o polomeru a, pak a*1,5 apod. Inspiraci pro lepsi reseni mohou byt struktury jako quadtree nebo R-tree.

stativ avatar 8.7.2009 14:53 stativ | skóre: 54 | blog: SlaNé roury
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
Já bych z toho vytvořil váhovou matici sousednosti přičemž bych předpokládal, že body tvoří úplný graf (všechny jsou spojeny se všema) a pak zkusil třeba Dijkstru nebo Floyda.
Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
8.7.2009 15:29 petr_p | skóre: 59 | blog: pb
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Matice sousednosti vytvoří kvadratické množství hran. Dijkstra má složitost O(E+V.log(V)), tedy složitost by byla kvadratická. To naivní prohledání je lineární ;)

Navíc Dijkstra je moc obecný. Tady si můžeme dovolit počítat s tím, že vzdálenosti bodů respektují topologii (tedy pokud se pohybujeme v Euklidovském prostoru). Například navržené kvarterní stromy jsou použitelné (používá to třeba Google na svých mapách).

Ono obecně hledání ve vícerozměrných strukturách je ošklivé a moc se toho nedá ulehčit. Většina GISových algoritmů předpokládá nějaké zjednodušení, které umožní preferovat jeden směr (třeba autor říká, že bude hledat jen ve směru osy), na kterém se vybuduje efektivní vyhledávací struktura a vedlejší veličiny se pak už neohrabaným způsobem navěsí na její listy.

8.7.2009 15:01 Radek Miček | skóre: 23 | blog: radekm_blog
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Nevím, jestli jsem to dobře pochopil. Máš neprázdnou množinu bodů M a úsečku mezi body [a, y] a [b, y], kde a<b. A pro určité body úsečky [z, y] chceš určit vzdálenost k nejbližšímu bodu z množiny M?

Budu předpokládat (možná špatně), že tě zajímají pouze vybrané hodnoty y např. 0, 1, 2, 3, ... A těch hodnot, které tě zajímají není mnoho. Potom pro každé y, které tě zajímá, můžeš spočítat intervaly na ose x [u1, u2], [u2, u3], [u3, u4],... takové, že pro každý bod [x,y], kde x je z intervalu [u(i), u(i+1)], bude nejbližší bod p(i).

Příklad: Tedy pokud máš množinu M se dvěma body p(1)=[0, 1] a p(2)=[2, 1], a zajímá tě y=0, pak si předem spočítáš intervaly [-nekonečno, 1], [1, nekonečno] a pro každou úsečku mající y=0 víš, že pro každý bod s x <= 1 je nejbližší bod p(1) a pro x >= 1 je nejbliží bod vždy p(2).

Tedy časová složitost je pro celou úsečku O(log n +count). Předzpracování nepočítám.

8.7.2009 15:46 volca
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Podle me by mohl pomoci vyvazeny BSP strom. Liche body budou rezat 2d prostor horizontalne, sude vertikalne. Find potom bude traverzovat podle uzlu, vzdy vybere tu polovinu prostoru na ktere sedi hledany bod (a zapamatuje nejkratsi vzdalenost) - body v druhe polovine prostoru jsou urcite dal.

Jde jen o to vyvazit ten BSP strom, aby v kazdem uzlu byla velikost obou vetvi srovnatelna.

8.7.2009 16:05 volca
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

A sakra, jak ted o tom premyslim tak by to nefungovalo. Ty delici primky musi byt v polovine mezi dvema body, nikoli skrze body samotne...

AraxoN avatar 8.7.2009 16:14 AraxoN | skóre: 45 | blog: slon_v_porcelane | Košice
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

BSP podľa osí ma tiež napadlo ako prvé, ale nerieši to podmienku najmenšej vzdialenosti od hľadaného bodu.

Dotaz ma ale inšpiroval do tej miery, že idem kúpiť pravítko, trojuholník, ceruzky, kružidlo a papiere a večer nad tým budem bádať :-D

A fine is a tax for doing wrong. A tax is a fine for doing well.
8.7.2009 16:27 volca
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Hodne stesti :)

Podle me to podle os nepujde, ale pujde to jako kolmice na spojnici dvou bodu v jejim stredu (ekvidistanta tech dvou bodu). Ta primka potom opravdu deli prostor na body blize bodu A a/nebo B. To vyvazovani by slo bud brute-force, tim ze se najde takova dvojice, jejiz delici cara produkuje pomer bodu na obou stranach co nejblizsi jednicce, nebo by mozna sel ten strom i zoptimalizovat po naivnim vybudovani - to vyvazovani bude obecne vetsi problem nez vystaveni toho stromu jako takoveho - coz je celkem jednoducha operace.

Co se tyce toho dotazu, tam je zajimave ze by mozna slo snadno zoptimalizovat prochazeni tim, ze se bude predavat cela mnozina bodu (ve forme usecky). Usecka se potom bude delit ve dvi v kazdem uzlu - vzniknou segmenty se stejnou prislusnosti k nejblizsimu bodu po protlaceni vsech segmentu do listu :)

AraxoN avatar 8.7.2009 16:36 AraxoN | skóre: 45 | blog: slon_v_porcelane | Košice
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Operácia zistenia toho, na ktorej strane priamky leží bod je (ak si dobre pamätám) triviálna - dosadia sa súradnice bodu do rovnice priamky ax+by+c a ak je výsledok kladný, tak to leží na jednej strane (ľavý podstrom), ak záporný tak na druhej (pravý podstrom) a ak rovný nule, tak bod leží na priamke (to by sa priradilo ku jednému z podstromov). Takže by z hľadiska výpočtovej zložitosti ani veľmi nevadilo, že priestor nebude delený podľa osí X a Y...

A fine is a tax for doing wrong. A tax is a fine for doing well.
9.7.2009 07:50 volca
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Tak po dalsim zamysleni musim odvrhnout myslenku ze to jde po segmentech - kazdy bod se musi resit zvlast. Podle os to samozrejme lze taky resit (kd-tree), ten prohledavaci algoritmus zkratka hleda nejkratsi bod do hloubky a neprechazi prez rozdelujici primku co je dal nez aktualni nejlepsi kandidat...

AraxoN avatar 9.7.2009 09:42 AraxoN | skóre: 45 | blog: slon_v_porcelane | Košice
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Tu nižšie v diskusii je odkaz na wikipediu (Voronoi diagram) a sú k tomu aj algoritmy. Spomína sa tam zložitosť O(n.log(n)), čo mi pripadá o dosť lepšie než to nad čím som uvažoval ja :-( ... ale aspoň som sa trochu precvičil v rysovaní a som zásobený písacími pomôckami na 10 rokov dopredu! :-D

A fine is a tax for doing wrong. A tax is a fine for doing well.
8.7.2009 16:43 xnov22
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
8.7.2009 17:27 Ivan
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

Hmm nevim jestli je to pro tvoji ulohu optimalni alg. Ale predtav si nasledujici situaci:

1. mame nakonecne veliky ctverec(koren stromu)

2. Vlozime do nej jeden bod -> ctverec se rozdeli na 4 pod-ctverce. Tyto pod-ctvrce jsou synove korene.

3. Mame dalsi bod. Projdeme koren, najdeme spravneho syna, a do nej vlozime dalsi bod a rozdelime ho na 4 syny

Pokud svoje body rozume nahodne zamichas, tak dostanes strom, ktery projdes log. case. Podobny alg. se pouziva pro reprezentaci map, akorat se misto bodu pouzivaji usecky.

Ivan

 

 

8.7.2009 18:48 petr_p | skóre: 59 | blog: pb
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
A říká se tomu kvarterní strom.
9.7.2009 09:53 tomfi | skóre: 19
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti

A není právě řešení toho problému to co je na tom nejlepší, nejzáživnější? ... samotné naprogramování už je pak nuda.

Vždyť jsou to jen jedničky a nuly ...
9.7.2009 14:34 Deleted [8409] | skóre: 14 | blog: darkblog
Rozbalit Rozbalit vše Re: Algoritmus pro vyhledání nejkratší vzdálenosti
Takže díky všem za reakce. Něco jsem zkoušel, ale zdá se mi, že chci řešit problém jiným způsobem, než by se měl řešit. Chci generovat výplň, která je definovaná jako grafická cesta (v GDI+ je to PathGradientBrush), tak mě napalo vygenerovat body té cesty, pak hledat ten nejbližší a podle toho přiřadit pixelu barvu (podle gradient lut tabulky). Jenže tento způsob je asi overkill a řešit se to dá pomocí trojúhelníků.

Jinak pomocí nejkratší vzdálenosti se mi líbí ty Voronoi diagramy, myslím, že by to krásně sedlo na hledání pole hodnot, ale stejně to budu řešit s největší pravděpodobností pomocí těch trojúhelníků.

Kdyby někdo věděl i jiný způsob, rád se nechám poučit. Kdybych měl upřesnit problém, tak já hledám nejkratší vzdálenost k úsečkám (tedy grafické cestě složené z úseček), ale měl jsem pocit, že jednodušší by bylo převést to na body a jen hledat nejkratší vsdálenosti k nim.

Založit nové vláknoNahoru

Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

ISSN 1214-1267   www.czech-server.cz
© 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.