Společnost IBM představila novou generaci svých serverů: IBM Power11.
Multiplatformní digitální pracovní stanice pro práci s audiem Ardour byla postavena na GTK2. Vývojáři neplánovali její portaci na GTK3 nebo GTK4. Naopak, v lednu loňského roku si vytvořili vlastní fork GTK2 s názvem YTK. Ten v únoru letošního roku přestal být volitelným a nově byla zcela odstraněna podpora GTK2.
Byla vydána nová verze 6.4 linuxové distribuce Parrot OS (Wikipedie). Jedná se o linuxovou distribuci založenou na Debianu a zaměřenou na penetrační testování, digitální forenzní analýzu, reverzní inženýrství, hacking, anonymitu nebo kryptografii. Přehled novinek v příspěvku na blogu.
Společnost initMAX pořádá sérii bezplatných webinářů věnovaných novému Zabbixu 7.4. Podrobnosti a registrace na webu initMAX.
… více »Byla vydána verze 7.0 open source platformy pro správu vlastního cloudu OpenNebula (Wikipedie). Kódový název nové verze je Phoenix. Přehled novinek v poznámkách k vydání v aktualizované dokumentaci.
E-mailový klient Thunderbird byl vydán ve verzi 140.0 ESR „Eclipse“. Jde o vydání s dlouhodobou podporou, shrnující novinky v upozorněních, vzhledu, správě složek a správě účtů. Pozor, nezaměňovat s průběžným vydáním 140.0, které bylo dostupné o týden dříve.
Organizace Video Games Europe reprezentující vydavatele počítačových her publikovala prohlášení k občanské iniciativě Stop Destroying Videogames.
Společnost Raspberry Pi nově nabzí Raspberry Pi Camera Module 3 Sensor Assembly, tj. samostatné senzorové moduly z Raspberry Pi Camera Module 3.
Cathode Ray Dude v novém videu ukazuje autorádio Empeg Car (později Rio Car) z let 1999–2001. Šlo o jeden z prvních přehrávačů MP3 do auta. Běží na něm Linux. Vyrobeno bylo jen asi pět tisíc kusů, ale zůstala kolem nich živá komunita, viz např. web riocar.org.
Open source platforma Home Assistant (Demo, GitHub, Wikipedie) pro monitorování a řízení inteligentní domácnosti byla vydána v nové verzi 2025.7.
// Most significant bit first (big-endian) // x^16+x^12+x^5+1 = (1) 0001 0000 0010 0001 = 0x1021 function crc(byte array string[1..len], int len) { rem := 0 // A popular variant complements rem here for i from 1 to len { rem := rem xor (string[i] leftShift (n-8)) // n = 16 in this example for j from 1 to 8 { // Assuming 8 bits per byte if rem and 0x8000 { // if leftmost (most significant) bit is set rem := (rem leftShift 1) xor 0x1021 } else { rem := rem leftShift 1 } rem := rem and 0xffff // Trim remainder to 16 bits } } // A popular variant complements rem here return rem }Je to CRC-16. Řekněme, že chcu počítat CRC-4, budu si předpočítávat tabulku, takže pro každý byte si spočítám element:
// pro každý 8b byte "nějakejByte" byte rem := 0 xor (nějakejByte leftShift (4-8)) for j from 1 to 8 { // if rem and 0x8 { rem := (rem leftShift 1) xor poly } else { rem := rem leftShift 1 } rem := rem and 0x7 } tabulka[nějakejByte] := remVyjde mi tam posun vlevo o -4 (4-8) ??? To se mi nezdá.
Řešení dotazu:
module jardik.checksum.crc; import jardik.inttypes; import std.traits; public struct CRCIntTraits(const size_t _CRC_BITS, _IntType = UIntFast!(_CRC_BITS)) { static const size_t CRC_BITS = _CRC_BITS; alias IntType = _IntType; static assert(isIntegral!(IntType), "Integral type required"); static assert(IntType.sizeof * 8 >= CRC_BITS, "Integral doesn't have enough bits"); static const IntType ZERO = 0; static const IntType ONE = 1; static const IntType CRC_HIBIT = ONE << (CRC_BITS-1); static if (CRC_BITS < IntType.sizeof * 8) { static const IntType CRC_MASK = ~cast(IntType)(~ZERO << CRC_BITS); static pure IntType crcMask(IntType val) { return val & CRC_MASK; } } else { static const IntType CRC_MASK = ~ZERO; static pure IntType crcMask(IntType val) { return val; } } } private pure IntType reflect(const size_t NUM_BITS, IntType) (IntType value) { alias IntTraits = CRCIntTraits!(NUM_BITS, IntType); IntType result = IntTraits.ZERO; for (size_t i = 0; i < NUM_BITS; ++i) { if (value & IntTraits.ONE) { result |= (IntTraits.ONE << (NUM_BITS - 1 - i)); } value >>= 1; } return result; } public struct CRCPoly(const size_t _CRC_BITS) { static const size_t CRC_BITS = _CRC_BITS; alias IntTraits = CRCIntTraits!(CRC_BITS); alias IntType = IntTraits.IntType; IntType normalValue; IntType reflectedValue; static CRCPoly fromData(U)(in U[] polyData) { IntType value = IntTraits.ZERO; foreach(n; polyData) { assert(n < CRC_BITS); value |= IntTraits.ONE << n; } return normal(value); } static CRCPoly normal(IntType value) { return CRCPoly(value, reflect!(CRC_BITS)(value)); } static CRCPoly reflected(IntType value) { return CRCPoly(reflect!(CRC_BITS)(value), value); } } unittest { import std.stdio; import core.exception; printf(">> Testing CRC poly generator\n"); // CRC-4-ITU try { immutable ubyte[] crc4polyData = [0,1]; const uint crc4polyCheck = 0x3U; const uint crc4polyReflectedCheck = 0xCU; auto crc4poly = CRCPoly!(4).fromData(crc4polyData).normalValue; auto crc4polyReflected = CRCPoly!(4).fromData(crc4polyData).reflectedValue; assert(crc4poly == crc4polyCheck); assert(crc4polyReflected == crc4polyReflectedCheck); printf(" ... CRC-4 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-4 poly failed.\n"); } // CRC-32 try { immutable ubyte[] crc32polyData = [0,1,2,4,5,7,8,10,11,12,16,22,23,26]; const uint crc32polyCheck = 0x04C11DB7U; const uint crc32polyReflectedCheck = 0xEDB88320U; auto crc32poly = CRCPoly!(32).fromData(crc32polyData).normalValue; auto crc32polyReflected = CRCPoly!(32).fromData(crc32polyData).reflectedValue; assert(crc32poly == crc32polyCheck); assert(crc32polyReflected == crc32polyReflectedCheck); printf(" ... CRC-32 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-32 poly failed.\n"); } // CRC-64-ECMA try { immutable ubyte[] crc64polyData = [ 0,1,4,7,9,10,12,13,17,19,21,22,23,24,27,29,31, 32,33,35,37,38,39,40,45,46,47,52,53,54,55,57,62 ]; const ulong crc64polyCheck = 0x42F0E1EBA9EA3693UL; const ulong crc64polyReflectedCheck = 0xC96C5795D7870F42UL; auto crc64poly = CRCPoly!(64).fromData(crc64polyData).normalValue; auto crc64polyReflected = CRCPoly!(64).fromData(crc64polyData).reflectedValue; assert(crc64poly == crc64polyCheck); assert(crc64polyReflected == crc64polyReflectedCheck); printf(" ... CRC-64 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-64 poly failed.\n"); } } public class CRCTableGen(// number of CRC bits const size_t _CRC_BITS, // integer type backing the CRC table entry _IntType = UIntFast!(_CRC_BITS), // whether to reflect CRC table entries const bool REFLECT = false) { enum : size_t { CRC_BITS = _CRC_BITS } alias IntType = _IntType; alias IntTraits = CRCIntTraits!(CRC_BITS, IntType); alias FastIntType = UIntFast!(CRC_BITS); alias FastIntTraits = CRCIntTraits!(CRC_BITS, FastIntType); public static pure IntType[] generate(in CRCPoly!CRC_BITS poly) { IntType[] table = new IntType[256]; generateImpl(table, poly); return table; } public static pure IntType[] generate(IntType[] reuseTable, in CRCPoly!CRC_BITS poly) { IntType[] table = reuseTable.length < 256 ? new IntType[256] : reuseTable; generateImpl(table, poly); return table; } static if (!REFLECT) { private static pure void generateImpl(IntType[] table, in CRCPoly!CRC_BITS poly) { FastIntType remainder; FastIntType polyVal = poly.normalValue; for (size_t divident = 0; divident < 256; ++divident) { remainder = FastIntTraits.ZERO; for (size_t mask = 0x80; mask != 0; mask >>= 1) { if (divident & mask) remainder ^= FastIntTraits.CRC_HIBIT; if (remainder & FastIntTraits.CRC_HIBIT) { remainder <<= 1; remainder ^= polyVal; } else { remainder <<= 1; } } table[divident] = cast(IntType)FastIntTraits.crcMask(remainder); } } } else { private static pure void generateImpl(IntType[] table, in CRCPoly!CRC_BITS poly) { FastIntType rem; FastIntType polyVal = poly.reflectedValue; size_t k; for (size_t divident = 0; divident < 256; ++divident) { rem = cast(FastIntType)divident; for (k = 0; k < 8; ++k) rem = rem & 1 ? polyVal ^ (rem >> 1) : (rem >> 1); table[divident] = cast(IntType)FastIntTraits.crcMask(rem); } } } } unittest { import std.stdio; import core.exception; const auto poly = CRCPoly!(32)(0x04C11DB7U, 0xEDB88320U); uint[] crcTable = CRCTableGen!(32, uint, false).generate(poly); uint[] crcTableReflected = CRCTableGen!(32, uint, true).generate(poly); File f = File("crc32test.txt", "w"); f.writeln(" NORMAL | REFLECT "); f.writeln("---------|----------"); for (size_t i = 0; i < 256; ++i) { f.writefln("%08X | %08X", crcTable[i], crcTableReflected[i]); } auto crc4poly = CRCPoly!(4).normal(0b1011U); ubyte[] crc4table = CRCTableGen!(4, ubyte, false).generate(crc4poly); f = File("crc4test.txt", "w"); size_t i; for (i = 0; i < 256-8; i+=8) { f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X,", crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3], crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]); } f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X", crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3], crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]); } public class CRC(const size_t CRC_BITS, _TableIntType = FastInt!(CRC_BITS), const bool _REFLECT_DATA = false, const bool _REFLECT_REM = _REFLECT_DATA) { alias IntTraits = CRCIntTraits!(CRC_BITS); alias IntType = IntTraits.IntType; alias TableIntType = _TableIntType; alias TableGen = CRCTableGen!(CRC_BITS, TableIntType, _REFLECT_DATA); alias PolyType = CRCPoly!(CRC_BITS); const(TableIntType)[] m_table; IntType m_init; IntType m_xor; IntType m_val; public this(in PolyType poly, IntType initVal, IntType xorVal) { this(TableGen.generate(poly), initVal, xorVal); } public this(const(TableIntType)[] table, IntType initVal, IntType xorVal) { m_table = table; m_init = initVal; m_xor = xorVal; m_val = m_init; } public void reset() { m_val = m_init; } public void update(string str) { update(cast(const(ubyte[]))str); } static if (_REFLECT_DATA) { public void update(in ubyte[] buf) { size_t tableIndex; foreach (IntType b; buf) { tableIndex = cast(size_t)((m_val ^ b) & cast(IntType)0xFFU); m_val = cast(IntType)(m_table[tableIndex] ^ (m_val >> 8)); } } } else { public void update(in ubyte[] buf) { size_t tableIndex; foreach (IntType b; buf) { static if (CRC_BITS < 8) tableIndex = cast(size_t)(b ^ (m_val << (8 - CRC_BITS))); else tableIndex = cast(size_t)(b ^ (m_val >> (CRC_BITS - 8))); m_val = IntTraits.crcMask(cast(IntType)(m_table[tableIndex] ^ (m_val << 8))); } } } public IntType peek() const { static if (_REFLECT_REM == _REFLECT_DATA) { return IntTraits.crcMask(m_val ^ m_xor); } else { return IntTraits.crcMask(reflect!(CRC_BITS, IntType)(m_val) ^ m_xor); } } public IntType finish() { IntType crcVal = peek(); reset(); return crcVal; } } public class CRC32 : CRC!(32, uint, true, true) { public this() { //super(PolyType.normal(0x04C11DB7U), 0xFFFFFFFFU, 0xFFFFFFFFU); super(PolyType.reflected(0xEDB88320U), 0xFFFFFFFFU, 0xFFFFFFFFU); } public this(const(uint)[] table) { super(table, 0xFFFFFFFFU, 0xFFFFFFFFU); } } unittest { import std.stdio; import core.exception; printf(">> Testing CRC32\n"); try { CRC32 crc32 = new CRC32(); crc32.update("abc"); ulong crc = crc32.finish(); assert(crc == 0x352441C2U); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC4 poly = 0xB\n"); try { auto crc4 = new CRC!(4, ushort, false, false)(CRCPoly!(4).normal(0xB), 0, 0); crc4.update("abcdef"); assert(crc4.finish() == 0x2); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC4 poly = 0xB, reflected\n"); try { auto crc4 = new CRC!(4, ushort, true, true)(CRCPoly!(4).normal(0xB), 0, 0); crc4.update("abcdef"); assert(crc4.finish() == 0x8); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC16-CCITT\n"); try { auto poly = CRCPoly!(16).normal(0x1021); auto crc16ccitt = new CRC!(16, ushort, false, false)(poly, 0xffff, 0); crc16ccitt.update("abcdef"); assert(crc16ccitt.finish() == 0x34ED); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC16\n"); try { auto poly = CRCPoly!(16).normal(0x8005); auto crc16 = new CRC!(16, ushort, true, true)(poly, 0, 0); crc16.update("abcdef"); assert(crc16.finish() == 0x5805); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC-12\n"); try { auto poly = CRCPoly!(12).normal(0x80F); auto crc = new CRC!(12, ushort, false, false)(poly, 0, 0); crc.update("abcdef"); assert(crc.finish() == 0x6C7); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC-12 reflected\n"); try { auto poly = CRCPoly!(12).normal(0x80F); auto crc = new CRC!(12, ushort, true, true)(poly, 0, 0); crc.update("abcdef"); assert(crc.finish() == 0xFE6); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } } int main() { return 0; }
Tiskni
Sdílej: