Poštovní klient Thunderbird byl vydán v nové verzi 145.0. Podporuje DNS přes HTTPS nebo Microsoft Exchange skrze Exchange Web Services. Ukončena byla podpora 32bitového Thunderbirdu pro Linux.
U příležitosti státního svátku 17. listopadu probíhá na Steamu i GOG.com již šestý ročník Czech & Slovak Games Week aneb týdenní oslava a také slevová akce českých a slovenských počítačových her.
Byla vydána nová verze 9.19 z Debianu vycházející linuxové distribuce DietPi pro (nejenom) jednodeskové počítače. Přehled novinek v poznámkách k vydání. Vypíchnout lze například nový balíček BirdNET-Go, tj. AI řešení pro nepřetržité monitorování a identifikaci ptáků.
Byla vydána nová verze 3.38 frameworku Flutter (Wikipedie) pro vývoj mobilních, webových i desktopových aplikací a nová verze 3.10 souvisejícího programovacího jazyka Dart (Wikipedie).
Organizace Apache Software Foundation (ASF) vydala verzi 28 integrovaného vývojového prostředí a vývojové platformy napsané v Javě NetBeans (Wikipedie). Přehled novinek na GitHubu. Instalovat lze také ze Snapcraftu a Flathubu.
Byl vydán Debian 13.2, tj. druhá opravná verze Debianu 13 s kódovým názvem Trixie. Řešeny jsou především bezpečnostní problémy, ale také několik vážných chyb. Instalační média Debianu 13 lze samozřejmě nadále k instalaci používat. Po instalaci stačí systém aktualizovat.
Google představil platformu Code Wiki pro rychlejší porozumění existujícímu kódu. Code Wiki pomocí AI Gemini udržuje průběžně aktualizovanou strukturovanou wiki pro softwarové repozitáře. Zatím jenom pro veřejné. V plánu je rozšíření Gemini CLI také pro soukromé a interní repozitáře.
V přihlašovací obrazovce LightDM KDE (lightdm-kde-greeter) byla nalezena a již opravena eskalace práv (CVE-2025-62876). Detaily v příspěvku na blogu SUSE Security.
Byla vydána nová verze 7.2 živé linuxové distribuce Tails (The Amnesic Incognito Live System), jež klade důraz na ochranu soukromí uživatelů a anonymitu. Tor Browser byl povýšen na verzi 15.0.1. Další novinky v příslušném seznamu.
Česká národní banka (ČNB) nakoupila digitální aktiva založená na blockchainu za milion dolarů (20,9 milionu korun). Na vytvořeném testovacím portfoliu, jehož součástí jsou bitcoin, stablecoiny navázané na dolar a tokenizované depozitum, chce získat praktickou zkušenost s držením digitálních aktiv. Portfolio nebude součástí devizových rezerv, uvedla dnes ČNB v tiskové zprávě.
Class Data
{
public:
...
std::vector<u8> readU8(Info i);
std::vector<float> readFloat(Info i);
std::vector<std::vector<float>> readFloatVector(Info i);
...
}
Ve třídě Info je hromada informací podle kterých ty data získávám + jejich datový typ uložený jako enum class
enum class DatovyTyp : u8 {U8,Float,FloatVector,...}
class Info
{
public:
...
std::string jmeno;
DatovyTyp typ;
...
}
Celé použití je dost nešikovné, protože když chci získat všechny data a pak je zase dál použít, musím mít IF pro každý datový typ:
(navazující metody už jsou teplate nebo přetížené, takže umí pracovat se všemi datovými typy, které potřebuju)
Data d(...);
for(...)
{
Info i(...);
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.readFloat(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.readU8(i),...);
}
}
Použití template ve smyslu:
template <typename T>
T read(Info i)
{
...
mě sice sjednotí všechny readXY do jedné šablony, ale pořád budu muset mít IF pro každý datový typ
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.read<float>(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.read<u8>(i),...);
}
Chtěl bych idálně mít nějaký kouzelný template, který vrací datový typ podle toho enum class DatovyTyp - což pokud vím nejde.
Takže se ptám, jestli existuje nějaká možnost jak uložit informaci o datovém typu tak, abych to potom mohl použít k určení návratového datového typu v template? Zatím jsem nic nenašel a co se pamatuju, tak tohle template neumožňují - existuje nějaká možnost jak to obejít?
Nebo jak to celé upravit nějak jinak, abych se vyhnul IF pro každý datový typ?
Díky.
Data získat. To se čistě templaty vyřešit nedá, protože templaty v C++ se řeší pouze při překladu. Nějaké runtimové logice s větvením se tedy nevyhneš. Dá se to ale částečně zjednodušit tím, že logiku, která za běhu zjistí požadovaný datový typ a podle toho zavolá příslušnou obsluhu přesuneš do jedné flexibilní funkce. Nějaký nástin, jak na to můžeš najít třeba tady: https://pastebin.com/XUvcSJUr. Vtip je v tom, že to, co se předává dispatcheru jako templatový parameter P lze naimplemetovat libovolně, zatímco dispatcher bude vždy jen jeden.
Dalo by se to samozřejmě rozšířit i pro případy, že by měl dispatcher něco vracet apod. ale princip by byl stejný...
read():
https://pastebin.com/5GuZk4m5
P, která s budou používat nejčastěji můžeš implementovat ty jako autor rozhraní s tím, že coder monkey prostě zavolá nějaký wrapper okolo dispatcheru a nebude řešit, co se vevnitř děje. std::variant v kódu není nejspíš proto, že je to věcička až z C++17 a starší překladače to nezbaští.
std::get<float>(variant) ... jestli mi teda zase něco neuniklo
std::variant? Tam se to řeší přes visitor patern.
Data data vždy jen jednoho typu nebo zda je možné zavolat d.readFloat() a d.readU8() na jedné instanci té třídy. To by se variantem myslím řešit nedalo. Aspoň trochu flexibilní logika, jak řešit ten druhý případ by mohla vypadat třeba takto:
#include <iostream>
#include <vector>
enum class TypeID {
String,
Float,
Integer
};
template <TypeID>
struct TypeIdentifier {
};
template <>
struct TypeIdentifier<TypeID::String> {
typedef std::string type;
};
template <>
struct TypeIdentifier<TypeID::Float> {
typedef float type;
};
template <>
struct TypeIdentifier<TypeID::Integer> {
typedef int32_t type;
};
struct Data {
template <typename T>
std::vector<T> read();
};
template <>
std::vector<std::string> Data::read()
{
return std::vector<std::string>{ "Zero", "One", "Two" };
}
template <>
std::vector<float> Data::read()
{
return std::vector<float>{ 0.1, 0.2, 0.3 };
}
template <>
std::vector<int32_t> Data::read()
{
return std::vector<int32_t>{ 10, 20, 30 };
}
template <typename T>
void print(const T &t)
{
for (auto && i : t)
std::cout << i << " ";
std::cout << "\n";
}
template <typename T>
void printReverse(const T &t)
{
for (auto it = t.rbegin(); it != t.rend(); it++)
std::cout << *it << " ";
std::cout << "\n";
}
template <template <typename> class P, typename S, typename... Args>
void dispatcher(const TypeID id, S &s, Args... args)
{
switch (id) {
case TypeID::String:
P<TypeIdentifier<TypeID::String>::type>::call(s, std::forward<Args>(args)...); break;
case TypeID::Float:
P<TypeIdentifier<TypeID::Float>::type>::call(s, std::forward<Args>(args)...); break;
case TypeID::Integer:
P<TypeIdentifier<TypeID::Integer>::type>::call(s, std::forward<Args>(args)...); break;
}
}
template <typename T>
struct Proc {
static void call(Data &d)
{
auto v = d.read<T>();
print(v);
}
};
template <>
struct Proc<int32_t> {
static void call(Data &d)
{
std::cout << "Specialization for int32_t\n";
auto v = d.read<int32_t>();
print(v);
}
};
template <typename T>
struct ProcTwo {
template <typename... Args>
static void call(Data &d, Args ...)
{
auto v = d.read<T>();
printReverse(v);
}
};
template <>
struct ProcTwo<float> {
static void call(Data &d, int i)
{
std::cout << "Specialization for float: " << i << "\n";
auto v = d.read<float>();
printReverse(v);
}
template <typename... Args>
static void call(Data &, Args...)
{
throw std::runtime_error("Function called with invalid parameters");
}
};
int main()
{
Data d;
dispatcher<Proc>(TypeID::String, d);
dispatcher<Proc>(TypeID::Float, d);
dispatcher<Proc>(TypeID::Integer, d);
dispatcher<ProcTwo>(TypeID::String, d);
dispatcher<ProcTwo>(TypeID::Float, d, 66);
//dispatcher<ProcTwo>(TypeID::Float, d); /* Throws at runtime */
dispatcher<ProcTwo>(TypeID::Integer, d);
return 0;
}
template<int N, class Head, class... Tail>
struct Dispatch {
static void dispatch(const Info& i, const Data& d) {
if (i.typ == N)
perform<Head>(i, d);
else
Dispatch<N+1, Tail...>::dispatch(i, d);
}
};
Tiskni
Sdílej: