abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
dnes 14:33 | Zajímavý projekt

Firma System76 v současnosti prodává upravené notebooky Clevo s předinstalovaným Linuxem (např. vlastní distribuce Pop!_OS), ale také vlastní desktopové sestavy Thelio. V příštích letech se chystá, jak informuje Jason Evangelho (rozhovor), pracovat na vlastním návrhu notebooků, nejprve „ultrabooku“ a posléze případně i přenosných pracovních stanic. Na trh by se mohly dostat za dva až tři roky.

Fluttershy, yay! | Komentářů: 0
dnes 14:22 | Zajímavý článek

Příspěvky na blogu LimitedResults (Twitter) jsou věnovány bezpečnosti čipů ESP32. Poslední příspěvek je věnován bezpečností chybě CVE-2019-17391. Útočník s fyzickým přístupem může z čipů vytáhnout klíče pro šifrování i bezpečné bootování. Vyjádření společnosti Espressif Systems. Chyba je opravena v čipu ESP32-D0WD-V3.

Ladislav Hagara | Komentářů: 1
včera 23:11 | Nová verze

Do 3. prosince probíhá na Humble Bundle slevová akce Fall Sale. V rámci této akce lze do neděle do 19:00 získat počítačovou hru Serial Cleaner (YouTube) běžící také v Linuxu zcela zdarma.

Ladislav Hagara | Komentářů: 0
včera 20:55 | Nová verze

Byla vydána nová verze 2.81 svobodného 3D softwaru Blender. Podrobný přehled novinek v oznámení o vydání.

Ladislav Hagara | Komentářů: 0
včera 16:22 | Zajímavý článek

Nadace Raspberry Pi vydala knihu s názvem Get Started With Arduino. Elektronická kniha je ke stažení zdarma (pdf). Tištěnou verzi lze koupit za 10 liber.

Ladislav Hagara | Komentářů: 1
včera 13:22 | IT novinky

Společnost Slimbook prodávající notebooky s nainstalovaným Linuxem, viz například KDE Slimbook, dnes představila svůj nový notebook PRO X 15. Cena notebooku je od 1 199 eur a porovnáván je s notebooky Apple MacBook PRO 16 nebo Dell XPS 15 2019.

Ladislav Hagara | Komentářů: 8
20.11. 15:44 | Nová verze

Byla vydána nová major verze open source komunikačního softwaru Jami (Wikipedie, GitLab). Její název je Free as in Freedom. Dřívější názvy projektu Jami byly SFLphone a následně Ring.

Ladislav Hagara | Komentářů: 0
20.11. 00:33 | Zajímavý projekt

Společnost MNT Research má v plánu na Crowd Supply spustit kampaň na podporu open source notebooku MNT Reform. Vývoj notebooku lze sledovat na Mastodonu.

Ladislav Hagara | Komentářů: 16
20.11. 00:11 | Zajímavý software

Chcete si zahrát víceuživatelský tetris v terminálu? Stačí spustit ssh netris.rocketnine.space. Na straně serveru běží netris. Zdrojové kódy v programovacím jazyce Go jsou k dispozici pod licencí GPLv3.

Ladislav Hagara | Komentářů: 0
19.11. 19:44 | Nová verze

Po čtyřech měsících vývoje od vydání verze 4.10 byla vydána nová verze 4.11 svobodné náhrady proprietárních BIOSů a UEFI coreboot (Wikipedie). Na vývoji se podílelo 130 vývojářů. Provedli 1630 změn. Přidána byla podpora pro 25 mainboardů.

Ladislav Hagara | Komentářů: 0
Jaké hodinky nosíte (nejčastěji)?
 (24%)
 (5%)
 (16%)
 (54%)
Celkem 311 hlasů
 Komentářů: 39, poslední dnes 16:39
Rozcestník
Alternativně viz také můj osobní blog (RSS), kde toho hlavně v angličtině vychází mnohem víc.

Pokud se vám líbilo něco z mé produkce, můžete svou přízeň vyjádřit na Patreonu:

Ne že bych je nějak potřeboval, ale patří to k věcem, které autory obecně potěší a jasně ukazují, že jsou lidi, kteří ty hodiny času stráveného psaním umí ocenit.


Víte že můžete odebírat mé blogy pomocí RSS? (Co je to RSS?)


A kdo neumí použít RSS, tak je tu twitter: @Bystroushaak.

Od určité doby jsou všechny texty které zde publikuji verzované na Githubu.

Jestliže najdete chybu, nepište mi do diskuze a rovnou jí opravte. Github má online editor, není to skoro žádná práce a podstatně mi tím usnadníte život. Taky vás čeká věčná sláva v commit logu :)

Aktuální zápisy

www.AutoDoc.Cz

Jak se píše programovací jazyk 6: Kompilátor AST do bytecode

5.5. 22:54 | Přečteno: 1997× | Obecné IT | Výběrový blog | poslední úprava: 5.5. 23:30

V minulém díle jsem rozepsal jak vypadají moje bajtkódy. Jak se k nim ale dostat? Přes moje původní obavy se ukázalo, že neoptimalizující kompilátor je v případě, že existuje abstraktní syntaktický strom krásně jednoduchý.

Ke každému prvku AST stromu jsem přidal metodu .compile(code_context), která do code_context objektu zkompiluje sebe sama, tedy vloží do něj patřičné literály a do bajtkódu vloží instrukce pro jejich použití.

Například pro objekt Self to vypadá takto:

def compile(self, context):
    context.add_bytecode(BYTECODE_PUSH_SELF)

    return context

Pro objekt představující čísla už je to trochu složitější, neboť je třeba prvně číslo vložit do seznamu literálů:

def compile(self, context):
    index = context.add_literal_int(self.value)

    context.add_bytecode(BYTECODE_PUSH_LITERAL)
    context.add_bytecode(LITERAL_TYPE_INT)
    context.add_bytecode(index)

    return context

V bajtkódu je vložená instrukce PUSH_LITERAL, poté typ literálu a jeho index.

U binární zprávy je krásně vidět, jak se prvně zkompiluje čemu se má zpráva poslat a poté teprve samotná zpráva:

def compile(self, context):
    context.add_literal_str_push_bytecode(self.name)

    self.parameter.compile(context)

    context.add_bytecode(BYTECODE_SEND)
    context.add_bytecode(SEND_TYPE_BINARY)
    context.add_bytecode(1)

    return context

Prvně se resolvne název, poté se zkompiluje obsah parametru a poté se tento obsah pošle objektu na názvu. Poslední řádek context.add_bytecode(1) určuje počet parametrů, což je u binárních zpráv vždy jeden.

Krásně se to kombinuje s objektem Send, který specifikuje fakt že se má něco něčemu poslat:

def compile(self, context):
    self.obj.compile(context)
    self.msg.compile(context)

    return context

Prvně zkompiluj objekt kterému bude něco posílat, což muže být třeba Self, poté samotnou zprávu, což může být třeba výše uvedená BinaryMessage.

Asi nejzajímavějším a nejsložitějším na zkompilování se ukázal Object:

def _add_slot_to_bytecode(self, context, name, value):
    boxed_name = String(name)
    boxed_name.compile(context)

    value.compile(context)

    context.add_bytecode(BYTECODE_ADD_SLOT)

def compile(self, context):
    obj = ObjectRepresentation()
    obj.meta_set_ast(self)
    obj.meta_set_parameters(self.params)

    index = context.add_literal_obj(obj)
    context.add_bytecode(BYTECODE_PUSH_LITERAL)
    context.add_bytecode(LITERAL_TYPE_OBJ)
    context.add_bytecode(index)

    for name, value in self.slots.iteritems():
        self._add_slot_to_bytecode(context, name, value)
        context.add_bytecode(SLOT_NORMAL)

    for name, value in self.parents.iteritems():
        self._add_slot_to_bytecode(context, name, value)
        context.add_bytecode(SLOT_PARENT)

    if self.code:
        new_context = CodeContext()
        obj.meta_set_code_context(new_context)
        for item in self.code:
            item.compile(new_context)

        obj.map.code_context = new_context

    return context

Složitost je do velké míry dána tím, že jsem se rozhodl, že objektové literály budu vkládat mezi literály jako poměrně jednoduché objekty, které nemají nic moc kromě parametrů předvyplněno. Vyplnění probíhá ve chvíli, kdy je objekt vytvořen.

Výše je možné vidět, že je nejdřív vytvořen prázdný objekt, do kterého je uložena jen AST reprezentace pro pozdější referenci a seznam parametrů, které přijímá. Celý zbytek je pak dodán až dynamicky za běhu - všechny sloty, všechny parent sloty a samozřejmě když obsahuje kód, tak je vše rekurzivně provedeno i pro kód.

Disassembler

Když už jsem měl hotový triviální kompilátor, rozhodl jsem se také napsat si k němu jednoduchý disassembler (ehm, disbytecoder), tedy něco co mi čitelněji zobrazí zkompilovaný kód. V podstatě to funguje inverzně ke kompilátoru; postupně bere instrukce a jejich parametry a překládá je na mnemotechnické zkratky instrukcí:

Napsal jsem to celé maximálně triviálně:

def _compute_index(bytecodes_len, bytecodes):
    return str(bytecodes_len - len(bytecodes))


def disassemble(bytecodes_bytearray):
    disassembled = []

    bytecodes = [ord(c) for c in bytecodes_bytearray]
    bytecodes_len = len(bytecodes)
    while bytecodes:
        index = _compute_index(bytecodes_len, bytecodes)
        bytecode = bytecodes.pop(0)

        if bytecode == BYTECODE_SEND:
            send_type = bytecodes.pop(0)

            send_type_str = {
                SEND_TYPE_UNARY: "UNARY",
                SEND_TYPE_BINARY: "BINARY",
                SEND_TYPE_KEYWORD: "KEYWORD",
                SEND_TYPE_UNARY_RESEND: "UNARY_RESEND",
                SEND_TYPE_KEYWORD_RESEND: "KEYWORD_RESEND",
            }[send_type]

            number_of_params = bytecodes.pop(0)

            disassembled.append([
                index,
                "SEND",
                "type:" + send_type_str,
                "params:" + str(number_of_params)
            ])
            continue

        elif bytecode == BYTECODE_PUSH_SELF:
            disassembled.append([
                index,
                "PUSH_SELF"
            ])
            continue

        elif bytecode == BYTECODE_PUSH_LITERAL:
            literal_type = bytecodes.pop(0)
            literal_index = bytecodes.pop(0)

            literal_type_str = {
                LITERAL_TYPE_NIL: "NIL",
                LITERAL_TYPE_INT: "INT",
                LITERAL_TYPE_STR: "STR",
                LITERAL_TYPE_OBJ: "OBJ",
                LITERAL_TYPE_FLOAT: "FLOAT",
                LITERAL_TYPE_BLOCK: "BLOCK",
                LITERAL_TYPE_ASSIGNMENT: "ASSIGNMENT",
            }[literal_type]

            disassembled.append([
                index,
                "PUSH_LITERAL",
                "type:" + literal_type_str,
                "index:" + str(literal_index)
            ])
            continue

        elif bytecode == BYTECODE_RETURN_TOP:
            disassembled.append([
                index,
                "RETURN_TOP"
            ])
            continue

        elif bytecode == BYTECODE_RETURN_IMPLICIT:
            disassembled.append([
                index,
                "RETURN_IMPLICIT"
            ])
            continue

        elif bytecode == BYTECODE_ADD_SLOT:
            slot_type = bytecodes.pop(0)
            slot_type_str = {
                SLOT_NORMAL: "SLOT_NORMAL",
                SLOT_PARENT: "SLOT_PARENT",
            }[slot_type]

            disassembled.append([
                index,
                "ADD_SLOT",
                "type:" + slot_type_str,
            ])
            continue

    return disassembled

Pokud se někomu zdá ten kód trochu divný a říká si proč jsem třeba nepoužil tuple místo listů, nebo proč tam šaším s přetypováváním na stringy, tak odpověď je RPython magie. Výsledek vypadá zabalený v samotné Selfové syntaxi například takto:

(|
  literals = (| l <- dict clone. |
    l
      at: 0 Put: "ObjBox(Object(slots={benchmark: Object(slots={i: IntNumber(0),
      i:: AssignmentPrimitive()}, code=[Send(obj=Block(code=[Send(obj=Send(obj=Self(),
      msg=Message(i)), msg=BinaryMessage(name=<, parameter=IntNumber(1000000)))]),
      msg=KeywordMessage(name=whileTrue:, parameters=[Block(code=[Send(obj=Self(),
      msg=KeywordMessage(name=i:, parameters=[Send(obj=Send(obj=Self(), msg=Message(i)),
      msg=BinaryMessage(name=+, parameter=IntNumber(1)))]))])]))]), run_benchmark:
      Object(slots={start_time: Nil(), start_time:: AssignmentPrimitive(), end_time:
      Nil(), end_time:: AssignmentPrimitive()}, code=[Send(obj=Send(obj=Send(obj=Self(),
      msg=Message(primitives)), msg=Message(interpreter)), msg=KeywordMessage(
      name=runScript:, parameters=['objects/stdlib.tself'])), Send(obj=Self(),
      msg=KeywordMessage(name=start_time:, parameters=[Send(obj=Send(obj=Send(obj=Self(),
      msg=Message(primitives)), msg=Message(time)), msg=Message(timestamp))])),
      Send(obj=Self(), msg=Message(benchmark)), Send(obj=Self(), msg=KeywordMessage(name=end_time:
      , parameters=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)),
      msg=Message(time)), msg=Message(timestamp))])), Send(obj=Send(obj=Send(
      obj=Send(obj=Send(obj=Self(), msg=Message(end_time)), msg=BinaryMessage(
      name=-, parameter=Send(obj=Self(), msg=Message(start_time)))), msg=Message(asString)),
      msg=BinaryMessage(name=+, parameter='
')), msg=Message(print))])}))";
      at: 1 Put: "StrBox(benchmark)";
      at: 2 Put: "ObjBox(Object(slots={i: IntNumber(0), i:: AssignmentPrimitive()},
      code=[Send(obj=Block(code=[Send(obj=Send(obj=Self(), msg=Message(i)),
      msg=BinaryMessage(name=<, parameter=IntNumber(1000000)))]), msg=KeywordMessage(
      name=whileTrue:, parameters=[Block(code=[Send(obj=Self(), msg=KeywordMessage(
      name=i:, parameters=[Send(obj=Send(obj=Self(), msg=Message(i)), msg=BinaryMessage(
      name=+, parameter=IntNumber(1)))]))])]))]))";
      at: 3 Put: "StrBox(i)";
      at: 4 Put: "IntBox(0)";
      at: 5 Put: "StrBox(i:)";
      at: 6 Put: "StrBox(run_benchmark)";
      at: 7 Put: "ObjBox(Object(slots={start_time: Nil(), start_time::
      AssignmentPrimitive(), end_time: Nil(), end_time:: AssignmentPrimitive()},
      code=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(primitives)), msg=Message(
      interpreter)), msg=KeywordMessage(name=runScript:, parameters=[
      'objects/stdlib.tself'])), Send(obj=Self(), msg=KeywordMessage(
      name=start_time:, parameters=[Send(obj=Send(obj=Send(obj=Self(),
      msg=Message(primitives)), msg=Message(time)), msg=Message(timestamp))])),
      Send(obj=Self(), msg=Message(benchmark)), Send(obj=Self(), msg=KeywordMessage(
      name=end_time:, parameters=[Send(obj=Send(obj=Send(obj=Self(), msg=Message(
      primitives)), msg=Message(time)), msg=Message(timestamp))])), Send(obj=Send(
      obj=Send(obj=Send(obj=Send(obj=Self(), msg=Message(end_time)), msg=BinaryMessage(
      name=-, parameter=Send(obj=Self(), msg=Message(start_time)))), msg=Message(asString)),
      msg=BinaryMessage(name=+, parameter='
')), msg=Message(print))]))";
      at: 8 Put: "StrBox(start_time)";
      at: 9 Put: "StrBox(start_time:)";
      at: 10 Put: "StrBox(end_time)";
      at: 11 Put: "StrBox(end_time:)".
  ).

  disassembled = (||
    ("0", "PUSH_LITERAL", "type:OBJ", "index:0"), 
    ("3", "PUSH_LITERAL", "type:STR", "index:1"), 
    ("6", "PUSH_LITERAL", "type:OBJ", "index:2"), 
    ("9", "PUSH_LITERAL", "type:STR", "index:3"), 
    ("12", "PUSH_LITERAL", "type:INT", "index:4"), 
    ("15", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("17", "PUSH_LITERAL", "type:STR", "index:5"), 
    ("20", "PUSH_LITERAL", "type:ASSIGNMENT", "index:0"), 
    ("23", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("25", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("27", "PUSH_LITERAL", "type:STR", "index:6"), 
    ("30", "PUSH_LITERAL", "type:OBJ", "index:7"), 
    ("33", "PUSH_LITERAL", "type:STR", "index:8"), 
    ("36", "PUSH_LITERAL", "type:NIL", "index:0"), 
    ("39", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("41", "PUSH_LITERAL", "type:STR", "index:9"), 
    ("44", "PUSH_LITERAL", "type:ASSIGNMENT", "index:0"), 
    ("47", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("49", "PUSH_LITERAL", "type:STR", "index:10"), 
    ("52", "PUSH_LITERAL", "type:NIL", "index:0"), 
    ("55", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("57", "PUSH_LITERAL", "type:STR", "index:11"), 
    ("60", "PUSH_LITERAL", "type:ASSIGNMENT", "index:0"), 
    ("63", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("65", "ADD_SLOT", "type:SLOT_NORMAL"), 
    ("67", "PUSH_LITERAL", "type:STR", "index:6"), 
    ("70", "SEND", "type:UNARY", "params:0"), 
    ("73", "RETURN_TOP"), 
    ("74", "RETURN_TOP"), 
    ("75", "RETURN_TOP"), 
    ("76", "RETURN_TOP")
  ).

bytecodes = (||
    3, 3, 0, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 1, 4, 6, 0, 3, 2, 5, 3, 6, 0, 6, 0, 6, 0, 3, 2, 6, 3,
    3, 7, 3, 2, 8, 3, 0, 0, 6, 0, 3, 2, 9, 3, 6, 0, 6, 0, 3, 2, 10, 3, 0, 0, 6, 0, 3, 2, 11, 3, 6,
    0, 6, 0, 6, 0, 3, 2, 6, 0, 0, 0, 4, 4, 4, 4
).

(Kód byl pro větší přehlednost zalomen)

Původně jsem měl výsledek obalen v JSONu, ale nakonec mi kamarád připoměl, že součástí experimentu s tinySelfem je vyzkoušet používat jeho objektové literály, čehož je výsledkem výše uvedený výpis.

Tedy interpreter vypisuje jako debug věci v syntaxi sama sebe. Nutno dodat, že je to celé zatím neotestované, neboť ve chvíli kdy byl tento blog napsán nebyly v tinySelfu podporovány ani pole, ani slovníky a jedná se tedy spíš jen o takový experimentální nástřel. Tomu taky odpovídají ty AST stringy na začátku, které jsou silně nepřehledné, a které to bude chtít časem určitě vylepšit.

Pokračování

Příště se už konečně podíváme jak vlastně uvnitř vypadá interpreter a smyčka vykonávání příkazů.

       

Hodnocení: 100 %

        špatnédobré        

Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

Komentáře

Vložit další komentář

xsubway avatar 5.5. 23:18 xsubway | skóre: 13 | blog: litera_scripta_manet
Rozbalit Rozbalit vše Re: Jak se píše programovací jazyk 6: Kompilátor AST do bytecode
Už se těším na pokračování. Dík.
7.5. 19:37 Ivorne | blog: Ivorne
Rozbalit Rozbalit vše Re: Jak se píše programovací jazyk 6: Kompilátor AST do bytecode
Zajímavý. To abych si našel čas a taky naprototypoval ten svůj jazyk, co jsem tu o něm někde vykládal.
ISSN 1214-1267   www.czech-server.cz
© 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.