Byla vydána nová verze 25.10.31 svobodného multiplatformního video editoru Shotcut (Wikipedie) postaveného nad multimediálním frameworkem MLT. Shotcut je vedle zdrojových kódů k dispozici také ve formátech AppImage, Flatpak a Snap.
O víkendu probíhá konference OpenAlt 2025 (Stream). Na programu je spousta zajímavých přednášek. Pokud jste v Brně, stavte se. Vstup zdarma.
Josef Průša představil novou velkoformátovou uzavřenou CoreXY 3D tiskárnu Prusa CORE One L a nový open source standard chytrých cívek OpenPrintTag i s novou přepracovanou špulkou.
Na GOG.com běží Autumn Sale. Při té příležitosti je zdarma hororová počítačová hra STASIS (ProtonDB: Platinum).
Ubuntu 25.10 má nově balíčky sestavené také pro úroveň mikroarchitektury x86-64-v3 (amd64v3).
Byla vydána verze 1.91.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Ministerstvo průmyslu a obchodu vyhlásilo druhou veřejnou soutěž v programu TWIST, který podporuje výzkum, vývoj a využití umělé inteligence v podnikání. Firmy mohou získat až 30 milionů korun na jeden projekt zaměřený na nové produkty či inovaci podnikových procesů. Návrhy projektů lze podávat od 31. října do 17. prosince 2025. Celková alokace výzvy činí 800 milionů korun.
Google v srpnu oznámil, že na „certifikovaných“ zařízeních s Androidem omezí instalaci aplikací (včetně „sideloadingu“) tak, že bude vyžadovat, aby aplikace byly podepsány centrálně registrovanými vývojáři s ověřenou identitou. Iniciativa Keep Android Open se to snaží zvrátit. Podepsat lze otevřený dopis adresovaný Googlu nebo petici na Change.org.
Byla vydána nová verze 18 integrovaného vývojového prostředí (IDE) Qt Creator. S podporou Development Containers. Podrobný přehled novinek v changelogu.
Cursor (Wikipedie) od společnosti Anysphere byl vydán ve verzi 2.0. Jedná se o multiplatformní proprietární editor kódů s podporou AI (vibe coding).
V neděli choď na mne s kombinatorikou ... řešení vidím a to mi stačí 
(4n)
Je celkem ( 3) způsobů jak vybrat tři body,
trojúhelník to nebude, když body leží na přímce -
(n)
tedy v (3) výberech pro každou stranu čtverce, výsledek je:
(4n) (n)
( 3) - 4*(3)
Já bych řekl, že první vrchol vybírám na kterékoliv straně čtverce, tedy 4.(n nad 1) možností, druhý vrchol na jedné ze zbývajících tří, tedy 3.(n nad 1) možností a poslední na jedné ze zbývajících dvou, tedy 2.(n nad 1) možností. To krát to krát to je suma sumárum 24n^3 možností.
Jasně, jsem pako. Těch se dvěma vrcholy na jedné straně a se třetím jinde je 4(n nad 2) + 3n.
Jasně, jsem pako. Těch se dvěma vrcholy na jedné straně a se třetím jinde je 4(n nad 2) + 3n.
24n^3
(n) ----- + 6n^3 - 6n^2 = 10n^3 - 6n^2
Je jich 4*(2)*3n, celkem je to tedy 6
Jo, to plus je překlep, patří tam samozřejmě krát 
(n)
Tři body můžeme vybrat (3) způsoby,
(p)
z toho leží v (3) možnostech na jedné přímce,
(n) (p)
tedy výsledek je (3) - (3).
to by mělo být totožné s tímto řešením:
počet trojúhelníků s vrcholy, které na přímce neleží,
(n - p)
je ( 3), počet trojúhelníků, které mají
(n - p)
na přímce právě jeden vrchol je p*( 2) a
počet trojúhelníků, které mají na přímce právě
(p)
dva vrcholy je (n - p)(2), dohromady to
dá celkový počet trojúhelníků
Tady mi to vychází stejně, tedy (n-p nad 3) + (n-p nad 2)(p nad 1) + (n-p nad 1)(p nad 2). První člen jsou trojúhelníky se všemi vrcholy mimo přímku, druhý trojúhelníky se dvěma vrcholy mimo přímku a jedním na n, třetí pak trojúhelníky se dvěma vrcholy na přímce a jedním mimo ni.
Po otrocké úpravě (bez záruky): (n - p)(4n^2 + 3np^2 - 11np - 6n - 3p^3 + 7p^2 + 6p + 2)/6. 
(n - p)(4n^2 + 3np^2 - 11np - 6n - 3p^3 + 7p^2 + 6p + 2)/6To je docela zvláštní výsledek, neboť počet trojúhelníků by měl být celočíslený, ale vzhledem k tomu, že se tam vyskytují koeficienty jako např. 11/6 nebo 7/6, tak si nejsem jist tou celočíselností.
Zvláštní jistě být může, nicméně není nutně špatný. Čitatel je vždy, jak ukazují následující tabulky, dělitelný i dvěma i třemi, tedy je dělitelný šesti, tedy je výsledek celý.
n p | n-p || 4n^2 | 3np^2 | 11np | 6n | 3p^3 | 7p^2 | 6p | 2 | sum | product ----+-----++------+-------+------+----+------+------+----+---+-----+-------- S S | S || | S S L | L || S | S | S | S | L | L | S | S | S | S L S | L || S | S | S | S | S | S | S | S | S | S L L | S || | S n%3 p%3 | n-p | 4n^2 | 3np^2 | 11np | 6n | 3p^3 | 7p^2 | 6p | 2 | sum | product --------+-----+------+-------+------+----+------+------+----+---+-----+-------- 0 0 | 0 | | 0 1 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 2 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 0 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 1 1 | 0 | | 0 2 1 | 1 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 0 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 1 2 | 2 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 2 2 | 0 | | 0
Nic dalšího už dneska nedokazuju 
Tiskni
Sdílej: