Projekt D7VK dospěl do verze 1.0. Jedná se o fork DXVK implementující překlad volání Direct3D 7 na Vulkan. DXVK zvládá Direct3D 8, 9, 10 a 11.
Byla vydána nová verze 2025.4 linuxové distribuce navržené pro digitální forenzní analýzu a penetrační testování Kali Linux (Wikipedie). Přehled novinek se seznamem nových nástrojů v oficiálním oznámení na blogu.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) zveřejnil Národní politiku koordinovaného zveřejňování zranitelností (pdf), jejímž cílem je nejen zvyšování bezpečnosti produktů informačních a komunikačních technologií (ICT), ale také ochrana objevitelů zranitelností před negativními právními dopady. Součástí je rovněž vytvoření „koordinátora pro účely CVD“, jímž je podle nového zákona o kybernetické … více »
Vývojáři KDE oznámili vydání balíku aplikací KDE Gear 25.12. Přehled novinek i s náhledy a videi v oficiálním oznámení.
Společnost System76 vydala Pop!_OS 24.04 LTS s desktopovým prostředím COSMIC. Videoukázky na YouTube.
Byla vydána verze 1.92.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Free Software Foundation zveřejnila ocenění Free Software Awards za rok 2024. Oceněni byli Andy Wingo, jeden ze správců GNU Guile, Alx Sa za příspěvky do Gimpu a Govdirectory jako společensky prospěšný projekt.
Bylo vydáno Eclipse IDE 2025-12 aneb Eclipse 4.38. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
U příležitosti oslav osmi let prací na debianím balíčku vyšlo GPXSee 15.6. Nová verze přináší především podporu pro geotagované MP4 soubory, včetně GoPro videí. Kdo nechce čekat, až nová verze dorazí do jeho distribuce, nalezne zdrojové kódy na GitHubu.
Monado, tj. multiplatformní open source implementace standardu OpenXR specifikujícího přístup k platformám a zařízením pro XR, tj. platformám a zařízením pro virtuální realitu (VR) a rozšířenou realitu (AR), bylo vydáno ve verzi 25.1.0. Přehled novinek v poznámkách k vydání.
convert mi ho bez problémů zmenšil na 1500x1500, jen při tom potřeboval skoro 2 GB paměti (samozřejmě virtuální).
program požádá třeba o 1M ram a tu potřebuje dostat v celku, takže pro alokaci musí být v RAM volný blok o velikosti 1M.V Linuxe je to pravda, v BSD nikoli, tam neexistuje fragmentacia pamate.
program požádá třeba o 1M ram a tu potřebuje dostat v celku, takže pro alokaci musí být v RAM volný blok o velikosti 1M
Musí být volný blok virtuální paměti, ne fyzické (ta může být klidně celá plná - tedy až na rezervu definovanou v /proc/sys/vm/min_free_kbytes).
To jste na omylu program požádá třeba o 1M ram a tu potřebuje dostat v celku, takže pro alokaci musí být v RAM volný blok o velikosti 1M.Nejsem expert na jadro ale jak to popisujete, tak mi z toho plyne, ze virtualni pamet je prakticky nanic. Resp. pokud by se neco odswapovalo, tak by to musel byt cely alokovany blok pameti. Funguje to opravdu takto? Ja zil doted v predstave, ze fyzicka pamet a pamet jak ji vidi proces spolu vubec nesouvisi a provadi se preklad v procesoru pomoci tabulek.
brk() a mmap(), natož user space - malloc(), new) samozřejmě pracuje s virtuální pamětí.
Aha, cili teda pulka bloku pameti zustane v RAM a druha bude na disku. Mezitim se ta odswapovana fyzicka RAM zaplni necim jinym (to je jedno cim) a nasledne nastane potreba priswapovat puvodni odswapovany blok zpet do RAM (rekneme, ze bude potreba). Protoze uz nemuze na sve puvodni misto, bude to nekam jinam. Dojde tedy k tomu, ze onen puvodni blok se ve fyzicke RAM "roztrhne". Proc tedy nejde naalokovat takto "roztrzeny" blok hned na zacatku, ale jak tvrdite, musi byt ve fyzicke RAM souvisly?
Nebo je nekde v me uvaze chyba?#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define MAX 1024*1024
#define SIZE 1024*1024
char *pointers[MAX];
int main(void)
{
int i;
char *tmp;
char buf[16];
for (i = 0; i < MAX; i++) pointers[i] = NULL;
for (i = 0; i < MAX; i++) {
pointers[i] = malloc(SIZE);
// memset(pointers[i], 'A', SIZE);
if (pointers[i] == NULL) {
fprintf(stderr, "Nemozem alokovat pamat (pointers)\n");
break;
}
}
for (i = 0; i < MAX; i += 2) {
if (pointers[i] != NULL) {
free(pointers[i]);
pointers[i] = NULL;
}
}
tmp = malloc(SIZE*2);
if (tmp == NULL) {
fprintf(stderr, "Nemozem alokovat pamat (tmp1)\n");
}
for (i = 0; i < MAX; i++) {
if (pointers[i] != NULL) {
free(pointers[i]);
pointers[i] = NULL;
}
}
tmp = malloc(SIZE*2);
if (tmp == NULL) {
fprintf(stderr, "Nemozem alokovat pamat (tmp2)\n");
}
fgets(buf, sizeof(buf), stdin);
return EXIT_SUCCESS;
}
Ne, proč? User space aplikacím po fyzické paměti nic není, ty s ní vůbec nepřijdou do styku. To je to, co tu celou dobu od začátku tvrdím - že má-li convert problémy s alokací paměti, není třeba přidávat fyzickou paměť, ale stačí dočasně zvětšit virtuální (přidáním swapu). Dokonce i ten zmiňovaný convert si poradí s 32 MB fyzické paměti a 256 MB swapu…
malloc() alokoval 224 MB blok (pochopitelně virtuální) paměti na počítači s 32 MB fyzické paměti a 256 MB swapem. Kdo nevěří, může si to klidně vyzkoušet sám.
ulimit -a').
Na 256M to asi neuděláš. On je totiž rozdíl 250M v 256M fyzické a 650M v 256M fyzické.
Právě jsem zmíněnou operaci, tj. zmenšení 15000x15000 obrázku (644 MB TIFF) příkazem convert z balíčku ImageMagick provedl na stroji s 64 MB fyzické paměti. Mám pro zajímavost zkusit ještě 32 MB?
tifftopnm -byrow big.tiff | pamscale -xscale=0.5 -yscale=0.5 | pnmtopng > output.pngTahle kolona zmenší původní tiff na polovinu a uloží výsledek ve formátu png
)
tifftopnm big.tiff >vystup.pnm pnmscale vystup.pnm -xscale=0.1 -yscale=0.1 > vystup_zmenseno.pnmToto cvičeni jsem provedl na P4 1.5GHz s 512 MB RAMM a šlo to docela rychle. Děkuji všem za odpovědi a názory na problém.
Tiskni
Sdílej: