abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×

dnes 06:00 | Zajímavý článek

USA Network vysílá již třetí sérii seriálu Mr. Robot (Wikipedie, ČSFD.cz). Ryan Kazanciyan, technický konzultant seriálu, se na Medium v sérii článků Mr. Robot Disassembled věnuje jednotlivým dílům a popisuje použité nástroje a postupy.

Ladislav Hagara | Komentářů: 1
včera 23:55 | IT novinky

Společnost StartCom oficiálně oznámila, že jako certifikační autorita končí. Od 1. ledna 2018 přestane vydávat nové certifikáty a následující 2 roky bude poskytovat OCSP a CRL. Počátkem roku 2020 budou všechny platné certifikáty zneplatněny.

Ladislav Hagara | Komentářů: 4
včera 22:00 | IT novinky

Hodnota Bitcoinu, decentralizované kryptoměny, překonala hranici 8 000 dolarů [reddit].

Ladislav Hagara | Komentářů: 2
včera 21:55 | Zajímavý software

Byla vydána verze 10.0 linuxové distribuce Raspberry Digital Signage. Jedná se o distribuci pro jednodeskové počítače Raspberry Pi určenou k prezentačním účelům (veletrhy, prodejny, ...). Po naběhnutí systému je spuštěn webový prohlížeč v režimu celé obrazovky a vybraná prezentace. Nejnovější Raspberry Digital Signage vychází z distribuce Raspbian Stretch.

Ladislav Hagara | Komentářů: 0
včera 13:33 | Zajímavý software

Společnost Google na svém blogu věnovaném open source představila container-diff, nástroj pro analýzu a porovnávání Docker kontejnerů. Zdrojové kódy jsou k dispozici pod licencí Apache 2.0.

Ladislav Hagara | Komentářů: 0
včera 08:00 | Komunita

Flatpak Workshop proběhne ve středu 29. listopadu od 10:00 v Brně. V dopolední přednáškové části se účastníci seznámí s Flatpakem, se specifiky pro aplikace napsané v Qt a GTK+, portály, které integrují aplikace do systému, a na závěr, jak dostat aplikaci do Flathubu, což je momentálně největší centralizovaný repozitář Flatpaků. V odpolední části si pak mohou za pomoci lektorů zkusit nějakou aplikaci zabalit pro Flatpak. Workshop je určen pro 20 účastníků. Nutná je registrace.

Ladislav Hagara | Komentářů: 6
včera 07:00 | Zajímavý článek

Software Freedom Law Center a Software Freedom Conservancy jsou organizace zaměřené na podporu svobodných/open-source projektů: SFLC poskytuje právní konzultace, SFC mj. také zázemí. SFC upozornila, že ze strany SFLC vůči ní proběhly právní kroky směřující k odebrání obchodní známky. SFLC v reakci tvrdí, že se jedná o logický krok, protože obchodní známky jsou si podobné, a SFC dlouhodobě nekooperuje. Brian Lunduke situaci shrnuje včetně ohlasů Neila McGoverna a Matthewa Garretta. Podle nich je Eben Moglen ze SFLC v konfliktu se zájmy komunity.

Fluttershy, yay! | Komentářů: 2
včera 06:00 | Komunita

MariaDB Foundation, nadace stojící za vývojem open source relační databáze MariaDB, oznámila, že Microsoft se stal jejím členem a platinovým sponzorem. Cílem Microsoftu je optimalizace MariaDB pro cloudovou platformu Microsoft Azure.

Ladislav Hagara | Komentářů: 0
16.11. 23:44 | IT novinky

Společnosti Dell a Canonical společně představily 5 nových počítačů Dell Precision s předinstalovaným Ubuntu. Jedná se o 4 notebooky a 1 all-in-one počítač. Cena počítačů s Ubuntu je o 100 dolarů nižší než jejich cena s Windows 10.

Ladislav Hagara | Komentářů: 15
16.11. 22:55 | Nová verze

Po pěti měsících vývoje od vydání verze 4.8 byla vydána nová verze 4.9 svobodného open source redakčního systému WordPress. Kódové označením Tipton bylo vybráno na počest amerického jazzového muzikanta a kapelníka Billyho Tiptona.

Ladislav Hagara | Komentářů: 0
Jak se vás potenciálně dotkne trend odstraňování analogového audio konektoru typu 3,5mm jack z „chytrých telefonů“?
 (9%)
 (1%)
 (1%)
 (1%)
 (74%)
 (14%)
Celkem 704 hlasů
 Komentářů: 36, poslední 17.11. 18:43
    Rozcestník

    Dotaz: Výpočet přírustku funkce o dvou proměnných

    14.4.2011 03:32 __dark__
    Výpočet přírustku funkce o dvou proměnných
    Přečteno: 633×
    Ahoj,

    vím, že je to celkem triviální úloha, ale nějak jsem se zasekl a nemůžu s tím hnout. Jde o to, že mám opravdu primitivní funkci o dvou proměnných 'x * y * C' a já bych potřeboval spočítat přírustek (delta), tak, abych v cyklu mohl jen přičítat tuto deltu a mít výsledek. X a Y se mění lineárně.

    Funkční kód vypadá takto:
    int i;
    
    double x, dx;
    double y, dy;
    double C;
    
    // nějaké startovní podmínky
    x = 5;
    y = 7;
    C = 4.55;
    
    // dx/dy je lineární.
    dx = 0.1;
    dy = 0.05;
    
    for (i = 0; i < 1000; i++)
    {
      double d = x * y * C;
      printf("%f\n", d);
    
      x += dx;
      y += dy;
    }
    
    Můj problém je, že bych v tom cyklu chtěl jen sčítat, takto bych si to představoval:
    int i;
    
    double x, dx;
    double y, dy;
    double C;
    
    // nějaké startovní podmínky
    x = 5;
    y = 7;
    C = 4.55;
    
    // dx/dy je lineární.
    dx = 0.1;
    dy = 0.05;
    
    // výpočet d a delty, popřípadě delta-delta?
    double d = x * y * C;
    double delta = ???
    
    for (i = 0; i < 1000; i++)
    {
      printf("%f\n", d);
    
      d += delta;
    }
    
    Pro výpočet delty jsem zkusil více možností, jsem si celkem jistý, že tam musí být y*dx*C + x*dy*C, ale něco mi tam chybí.

    Takže, je tu nějaký zkušený matematik, co by věděl:_) ?

    Odpovědi

    14.4.2011 03:47 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Pro zájemnce krátký testovací program v Pythonu, hledám d_d_d (delta-delta)
    import math
    
    def f(x, y, C):
      return x * y * C
      
    x = 1.5
    y = 1.9
    C = 1.4
    dx = 1.5
    dy = 1.1
    
    d = f(x, y, C)
    d_d = x * dy * C + y * dx * C + dx * dy * C
    d_d_d = dx * C + dy * C
    
    for i in xrange(0, 10):
      a = f(x, y, C)
      d
      
      if abs(a - d) > 0.001:
        print "a=%f b=%f (FAILED)" % (a, d)   
      else:
        print "a=%f b=%f (OK)" % (a, d)   
      
      d += d_d
      d_d += d_d_d
      x += dx
      y += dy
    
    14.4.2011 04:00 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Protože mi to nedalo, musel jsem to vyřešit sám :-) Je potřeba i druhá derivace funkce, takže mám 2 přírůstky (d, d_d), které jsou:
    d   = x * dy * C + y * dx * C + dx * dy * C
    d_d = 2 * C * dx * dy
    
    Takže uzavřít :-)
    14.4.2011 08:37 l4m4
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Nemá to hlavu ani patu.

    Čeho se snažíš dosáhnout tím sčítáním? Proč počítáš derivace a zase je sčítáš? To je jako psát program ověřující 1 == 1.

    Když máš přimitivní funkci, tak už nemáš co sčítat a počítat nějaké delty, to už je výsledek.

    Výsledek je v každém případě funkcí dvou proměnných. To co děláš, může být pokus o pohyb po nějaké nespecifikované křivce v rovině (x,y), která je zde náhodou přímka se sklonem dy/dx, nebo taky nesmysl.

    S těmi druhýmí derivacemi je to úplný blábol.
    14.4.2011 10:06 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Zjevně nechápeš, co je něco počítat v cyklu:) Přikládám testovací program, který už funguje. Šlo o to, abych spočítal průběh té funkce, aniž bych musel dosazovat do f(), takže jsem spočítal přírustek (d), a přírůstek přírůstku (d_d).

    Nechce se mi hledat skripta a přesný název toho, co hledám, ale v Mathematice se na to dá použít funkce DifferenceDelta[].

    Jde mi o výkon, tato funkce je část jiné funkce, kterou už jsem měl hotovou, jen tato malá věc, kde bylo x a y neseparovatelné, mi způsobila trochu problém:)
    import math
    
    def f(x, y, C):
      return x * y * C
      
    x = 1.5
    y = 1.9
    C = 1.4
    dx = 1.9
    dy = 1.5
    
    d = f(x, y, C)
    d_d = x * dy * C + y * dx * C + dx * dy * C # První
    d_d_d = 2 * C * dx * dy # Druhá
    
    for i in xrange(0, 10):
      a = f(x, y, C)
      
      if abs(a - d) > 0.001:
        print "a=%f b=%f (FAILED)" % (a, d)   
      else:
        print "a=%f b=%f (OK)" % (a, d)   
      
      d += d_d
      d_d += d_d_d
      x += dx
      y += dy
    
    14.4.2011 13:39 l4m4
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Šlo o to, abych spočítal průběh té funkce, aniž bych musel dosazovat do f()
    No dobře, to je popis toho, co děláš. Ale tím, že to popíšeš, to nezačne dávat smysl.

    Proč nechceš počítat hodnotu funkce, když ji spočítat dovedeš? Je to skoro vždy mnohem jednodušší než numerická integrace -- v tvém případě je to zcela evidentně jednodušší. Jediná důležitá praktická výjimka, kterou znám, je obecný Bresenhamův algoritmus pro rasterizaci algebraických křivek, ale tam je to právě tou diskretizací do rastru.

    A že to s tou druhou derivací provádí něco smysluplného je zde dáno čistě tím, že Taylorův rozvoj té funkce končí u druhého řádu. Takže ve skutečnosti počítáš přímo zase hodnotu té funkce, akorát ten polynom máš hrozně složitě rozepsaný.
    14.4.2011 18:14 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Protože chci počátat diferenciál, stačí?
    14.4.2011 10:12 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    A jinak sorry, ale trvdit o něčem, že to nemá hlavu ani patu, když máš k dispozici i zdroják na otestování, je trochu ubohé. Ta funkce je taky hodně primitivní, takže sis chtěl asi jen rýpnout ne...?

    S tou druhou derivací to zase takový blábol nebude, protože nehledám parciální, ale úplnou.
    14.4.2011 13:51 l4m4
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    A jinak sorry, ale trvdit o něčem, že to nemá hlavu ani patu když máš k dispozici i zdroják na otestování, je trochu ubohé.
    Mohu a budu s klidem tvrdit, že to nemá to hlavu ani patu, i kdyby k tomu bylo deset testovacích zdrojáků, pokud nemá hlavu ani patu původní formulace problému.
    Ta funkce je taky hodně primitivní, takže sis chtěl asi jen rýpnout ne...?
    Primitivní funkce je (zhruba řečeno) taková, kterou když zderivuji, dostanu původní funkci. Tato vlastnost není kvantifikovatelná. Buď funkce k dané funkci primitivní je, nebo není, nemůže být více nebo méně primitivní.
    S tou druhou derivací to zase takový blábol nebude, protože nehledám parciální, ale úplnou.
    Děkuji za potvrzení, že to je naprostý blábol.

    Parciální derivace je derivace podle jednoho argumentu.

    Totální derivace je pojem, který má smysl, pouze pokud jsou některé argumenty funkcemi dalších argumentů/proměnných. To zde má nastávat konkrétně kde a jak? A i pak se v první totální derivaci vyksytují stále jen particální derivace. Totéž pro totální diferenciál.
    14.4.2011 18:15 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Děkuji za potvrzení, že to je naprostý blábol.

    Parciální derivace je derivace podle jednoho argumentu.

    Totální derivace je pojem, který má smysl, pouze pokud jsou některé argumenty funkcemi dalších argumentů/proměnných. To zde má nastávat konkrétně kde a jak? A i pak se v první totální derivaci vyksytují stále jen particální derivace. Totéž pro totální diferenciál.
    Funkce x*y má diferenciál, a diferenciál diferenciálu, já fakt nevím, co je na tom nepochopytelné.
    14.4.2011 19:49 l4m4
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Dokážeš vůbec rozlišit mezi derivací a diferenciálem?

    Nepochopitelné je, jak tu žonglueš matematickými pojmy.
    14.4.2011 21:35 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Nepochopitelné je, že si tu jediný, kdo nepochopil, o co jde. Namísto analytického řešení tu plácáš něco o numerické matematice na příkladu x*y. Pokud nemáš nic k tématu, tak opravdu nechápu, jaký mají tvoje komentáře smysl.
    Dokážeš vůbec rozlišit mezi derivací a diferenciálem?
    Dokážu, ale netvářím se, že to spolu nesouvisí...
    Nepochopitelné je, jak tu žonglueš matematickými pojmy.
    No vidíš, a ty do toho přidáváš elektrárny a mosty. Máš tu nejvíc příspěvků, a trumfl tě ten nejmenší co tu je.
    14.4.2011 10:21 dementni.lojzik | skóre: 19 | blog: ze zivota na vsi
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    jen tak pro upresneni, to neni zadna druha derivace, ale jen dosazeni, totalni diferencial te funkce je df(x,y) = C*y*dx + C*x*dy, pricemz vis, ze y = x0 + i*dx, y = y0 + i*dy a to dosadis za x a y pri vypoctu totalniho diferencialu a dostanes (pro i-tou iteraci) \Delta f = C*x0*dy + C*y0*dx + i*2*C*dx*dy
    14.4.2011 10:26 dementni.lojzik | skóre: 19 | blog: ze zivota na vsi
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    ech, su blbej, pochopitelne je to diferencial diredencialu...
    14.4.2011 13:55 l4m4
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Pokud potřebuješ numericky řešit diferenciální rovnici, tak se podívej na Runge-Kuttovu metodu (nebo spíš metody, je to celá rodina metod), což je skutečná a dobré metoda vyššího řádu. Nejdířv ale budeš muset ten problém smysluplně formulovat.
    14.4.2011 18:09 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Ale já už jsem to dávno vyřešil, tak nevím co pořád máš. Nic numericky řešit nepotřebuju, když se to dalo udělat analyticky...
    14.4.2011 19:56 l4m4
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    ROTFL!

    Vážně, při tomto jsem málem spadl ze židle. Akorát doufám, že nebudeš projektovat jaderné elektrárny, mosty, nebo raději vůbec cokoli, s čím přijdu v životě do styku.
    14.4.2011 21:39 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Já zase padám ze židle z toho, že se celou dobu tváříš, že absolutně nelze pochopit dotaz. Ostatní to pochopili, takže bude asi problém u tvého vedení:)
    14.4.2011 19:37 VM
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Dělal bych to takhle - zkontrolujte to po mě, netestoval jsem to. Možná je to blbě, ale myšlenka by tam být měla.

    Teorie:
    "d" se v jednom kroku zvětší o C*x*dy + C*dx*y (označíme "a")
    "C*x*dy" se zvětší o C*dx*dy
    "C*dx*y" se zvětčí také o C*dx*dy, tuto konstantu označíme "b/2"
    Takže "C*x*dy + C*dx*y" se zvětší o "b"
    
    Takže by mělo stačit něco ve smyslu:
    d=x*y*C;
    a=C*(x*dx+dx*y);
    b=2*dx*dy*C;
    for(i=0; i<1000; i++) {
        printf("%f\n",d);
        d+=a;
        a+=b;
    }
    
    
    14.4.2011 19:53 __dark__
    Rozbalit Rozbalit vše Re: Výpočet přírustku funkce o dvou proměnných
    Já už jsem to vyřešil, ale to a se mi nezdá:) Potřeboval jsem diferenciál této funkce:
    d = x^2 * (r^2 - fy^2) + y^2 * (r^2 - fx^2) + x*y * (2*fx*fy)
    
    Ale problém jsem měl právě s tím x*y:)

    Celý kód je zde:

    http://code.google.com/p/fog/source/browse/trunk/Fog/Fog/G2d/Render/Render_C/PGradientRadial_p.h

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.