V repozitáři AUR (Arch User Repository) linuxové distribuce Arch Linux byly nalezeny a odstraněny tři balíčky s malwarem. Jedná se o librewolf-fix-bin, firefox-patch-bin a zen-browser-patched-bin.
Dle plánu by Debian 13 s kódovým názvem Trixie měl vyjít v sobotu 9. srpna.
Vývoj linuxové distribuce Clear Linux (Wikipedie) vyvíjené společností Intel a optimalizováné pro jejich procesory byl oficiálně ukončen.
Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
lp
. Tím se snadno odliší chyby aplikací od chyb print serveru / tiskárny.
Už dávno jsem si vyrobil jednoduchou postscriptovou testovací stránku pro kalibraci tiskáren.
Vyrobil jsem podobnou stránku (je v příloze blogu), ale ne tak pěknou, díky.
To je nečekaně častý problém.
To mne na tom právě trápí asi víc než to, že jsem zrovna nemohl vytisknout dokument v měřítku. Proto jsem vlastně kolem toho psal ten článek, byť to řešení samotného problému je celkem triviální. Tohle se opakuje často a na různých místech, nejde jen o tisk, je to obecný problém s kvalitou – něco se rozbije a nikdo1 si toho nevšimne, opraví se to až po letech a pak klidně rok nebo déle trvá, než se ta oprava dostane do distribucí, které používají běžní uživatelé.
[1] resp. oni si toho všimnou ti uživatelé, kteří pak dotyčný software třeba přestanou používat, ale nikde to nenahlásí jako chybu, takže z pohledu vývojářů žádný problém neexistuje
pokud byste hledali ve své distribuci PPD soubory pro nenainstalované tiskárny, tak je pravděpodobně nenajdete. Místo nich tam máte /usr/lib/cups/driver/openprinting-ppds, což je skript v Pythonu, který v sobě má textovou proměnnou s velmi dlouhým řetězcem (celý ten skript má přes 5 MB) ve formátu Base64, uvnitř kterého jsou zkomprimované všechny PPD soubory. Tohle raději nebudu komentovat. PPD soubory si můžeme vypsat pomocí openprinting list a jeden konkrétní získat pomocí openprinting-ppds cat URI (kde URI začíná openprinting-ppds: a jde o první sloupec z výpisu). Získání jednoho PPD souboru na mém ne úplně pomalém počítači s SSD diskem trvá dva a půl vteřiny. Tím se vysvětluje, proč přidávání nové tiskány přes CUPS není zrovna dvakrát rychlé.masakr
Ano, týká se to Debianu a Ubuntu. Docela by mne zajímalo, co je k tomu vedlo.
Ono těch 5 000+ souborů může někoho vyplašit, ale pro souborový ani balíčkovací systém by neměl být reálný problém a výkon by měl být lepší než v Pythonu prohledávat komprimovanou proměnnou zabalenou v Base64.
Ono je to rozbité i přímo v té tiskárně:
dávám PDF soubory na USB flashku a nesu je k tiskárně – ta má USB port a nabízí tzv. přímý tisk. Ovládání přes ten malý displej a pár tlačítek je docela použitelné. Tiskárna tiskne… a další makulatura je na světě. Výsledek je o nějaký ten milimetr lepší, ale stále je to celé špatně. Až tak „přímý“ tisk to tedy nebude.
a to je proprietární firmware, se kterým uživatel nic nenadělá. Oproti tomu v GNU/Linuxu je všechno softwarové a protože je to svobodný software, tak to lze opravit. (ano, trvalo to hodně dlouho)
Na druhou stranu, když jsou programy skládané tímhle způsobem a volají se jako podproces, tak se to dá snáze ohackovat, aniž bych musel jít do zdrojáků a něco kompilovat. Můžu si udělat např. skript s názvem lpr
, přidat si ho do $PATH
a pomocí něj to odladit – jednak se můžu dívat, co jde dovnitř (parametry příkazu, proměnné prostředí, STDIN…), co jde ven (STDOUT, STDERR…), vedlejší efekty monitorovat přes strace
… a když se mi něco nelíbí, tak v tom svém skriptu upravím ty parametry a s nimi pak zavolám ten skutečný lpr
.
Pokud by to bylo řešené např. přes D-Bus, můžu komunikaci sledovat přes dbus-monitor
, ale už nevím, jak do toho vstoupit a přepisovat hodnoty (asi bych musel tu původní službu přesunout a na její místo nasadit nějakou svoji proxy, kterou bych si napsal). Podobné je to s komunikací přes TCP/IP nebo UDP/IP – monitorovat to jde snadno přes Wireshark. Ale vstoupit do té komunikace a upravovat ji, to je trochu víc práce než u těch podprocesů.
Jakou technologií je ten subsystém řešený v KDE 3? Ono by to vlastně šlo řešit přes podprocesy i v případě, že tam bude nějaká abstraktní vrstva, která to bude přesměrovávat dál (CUPS, external program, LPD, LPR/LPRng, RLPR).
Tiskni
Sdílej: