Dle plánu certifikační autorita Let's Encrypt nově vydává také certifikáty s šestidenní platností (160 hodin) s možností vystavit je na IP adresu.
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 14.0 (Mastodon). Forgejo je fork Gitei.
Just the Browser je projekt, 'který vám pomůže v internetovém prohlížeči deaktivovat funkce umělé inteligence, telemetrii, sponzorovaný obsah, integraci produktů a další nepříjemnosti' (repozitář na GitHubu). Využívá k tomu skrytá nastavení ve webových prohlížečích, určená původně pro firmy a organizace ('enterprise policies'). Pod linuxem je skriptem pro automatickou úpravu nastavení prozatím podporován pouze prohlížeč Firefox.
Svobodný multiplatformní herní engine Bevy napsaný v Rustu byl vydán ve verzi 0.18. Díky 174 přispěvatelům.
Miliardy korun na digitalizaci služeb státu nestačily. Stát do ní v letech 2020 až 2024 vložil víc než 50 miliard korun, ale původní cíl se nepodařilo splnit. Od loňského února měly být služby státu plně digitalizované a občané měli mít právo komunikovat se státem digitálně. Do tohoto data se povedlo plně digitalizovat 18 procent agendových služeb státu. Dnes to uvedl Nejvyšší kontrolní úřad (NKÚ) v souhrnné zprávě o stavu digitalizace v Česku. Zpráva vychází z výsledků víc než 50 kontrol, které NKÚ v posledních pěti letech v tomto oboru uskutečnil.
Nadace Wikimedia, která je provozovatelem internetové encyklopedie Wikipedia, oznámila u příležitosti 25. výročí vzniku encyklopedie nové licenční dohody s firmami vyvíjejícími umělou inteligenci (AI). Mezi partnery encyklopedie tak nově patří Microsoft, Amazon a Meta Platforms, ale také start-up Perplexity a francouzská společnost Mistral AI. Wikimedia má podobnou dohodu od roku 2022 také se společností Google ze skupiny
… více »D7VK byl vydán ve verzi 1.2. Jedná se o fork DXVK implementující překlad volání Direct3D 5, 6 a 7 na Vulkan. DXVK zvládá Direct3D 8, 9, 10 a 11.
Byla vydána verze 12.0.0 knihovny libvirt (Wikipedie) zastřešující různé virtualizační technologie a vytvářející jednotné rozhraní pro správu virtuálních strojů. Současně byl ve verzi 12.0.0 vydán související modul pro Python libvirt-python. Přehled novinek v poznámkách k vydání.
CreepyLink.com je nový zkracovač URL adres, 'díky kterému budou vaše odkazy vypadat tak podezřele, jak je to jen možné'. Například odkaz na abclinuxu.cz tento zkracovač převádí do podoby 'https://netflix.web-safe.link/logger_8oIlgs_free_money.php'. Dle prohlášení autora je CreepyLink alternativou ke zkracovači ShadyURL (repozitář na githubu), který dnes již bohužel není v provozu.
Na blogu Raspberry Pi byla představena rozšiřující deska Raspberry Pi AI HAT+ 2 s akcelerátorem Hailo-10 a 8 GB RAM. Na rozdíl od předchozí Raspberry Pi AI HAT+ podporuje generativní AI. Cena desky je 130 dolarů.
#include (nepovolena sipka)TinyWireM.h(nepovolena sipka) // I2C Master lib for ATTinys which use USI
#define PICO_ADDR 0x41 //0x055 zakladni adresa pica
int led = 3;
void setup(){
pinMode(led, OUTPUT);
digitalWrite(led, LOW);
TinyWireM.begin(); // initialize I2C lib
delay(2000);
}
void loop(){
digitalWrite(led, HIGH);
delay(500);
digitalWrite(led, LOW);
delay(1000);
digitalWrite(led, HIGH);
delay(500);
digitalWrite(led, LOW);
delay(1000);
digitalWrite(led, HIGH);
delay(500);
digitalWrite(led, LOW);
delay(2000);
Posli_jeden_byte();
Posli_text();
}
void Posli_jeden_byte(){
TinyWireM.beginTransmission(PICO_ADDR);
TinyWireM.send(0xAB);
TinyWireM.endTransmission();
}
void Posli_text(){
TinyWireM.beginTransmission(PICO_ADDR);
char myString[12] = "Nazdar!";
for(byte i = 0; i <= strlen(myString); i++)
{
TinyWireM.send(myString[i]);
}
TinyWireM.endTransmission();
}
A zde kod pro Pico jako slave:
from machine import mem32, Pin
class i2c_slave:
I2C0_BASE = 0x40044000
I2C1_BASE = 0x40048000
IO_BANK0_BASE = 0x40014000
mem_rw = 0x0000
mem_xor = 0x1000
mem_set = 0x2000
mem_clr = 0x3000
IC_CON = 0
IC_TAR = 4
IC_SAR = 8
IC_DATA_CMD = 0x10
IC_RX_TL = 0x38
IC_TX_TL = 0x3C
IC_CLR_INTR = 0x40
IC_ENABLE = 0x6c
IC_STATUS = 0x70
def write_reg(self, reg, data, method=0):
mem32[ self.i2c_base | method | reg] = data
def set_reg(self, reg, data):
self.write_reg(reg, data, method=self.mem_set)
def clr_reg(self, reg, data):
self.write_reg(reg, data, method=self.mem_clr)
def __init__(self, i2cID = 0, sda=0, scl=1, slaveAddress=0x41):
self.scl = scl
self.sda = sda
self.slaveAddress = slaveAddress
self.i2c_ID = i2cID
if self.i2c_ID == 0:
self.i2c_base = self.I2C0_BASE
else:
self.i2c_base = self.I2C1_BASE
# 1 Disable DW_apb_i2c
self.clr_reg(self.IC_ENABLE, 1)
# 2 set slave address
# clr bit 0 to 9
# set slave address
self.clr_reg(self.IC_SAR, 0x1ff)
self.set_reg(self.IC_SAR, self.slaveAddress &0x1ff)
# 3 write IC_CON 7 bit, enable in slave-only
self.clr_reg(self.IC_CON, 0b01001001)
# set SDA PIN
mem32[ self.IO_BANK0_BASE | self.mem_clr | ( 4 + 8 * self.sda) ] = 0x1f
mem32[ self.IO_BANK0_BASE | self.mem_set | ( 4 + 8 * self.sda) ] = 3
# set SLA PIN
mem32[ self.IO_BANK0_BASE | self.mem_clr | ( 4 + 8 * self.scl) ] = 0x1f
mem32[ self.IO_BANK0_BASE | self.mem_set | ( 4 + 8 * self.scl) ] = 3
# 4 enable i2c
self.set_reg(self.IC_ENABLE, 1)
def any(self):
# get IC_STATUS
status = mem32[ self.i2c_base | self.IC_STATUS]
# check RFNE receive fifio not empty
if (status & 8) :
return True
return False
def get(self):
while not self.any():
pass
return mem32[ self.i2c_base | self.IC_DATA_CMD] & 0xff
if __name__ == "__main__":
import utime
from machine import mem32
from i2cSlave import i2c_slave
s_i2c = i2c_slave(0,sda=0,scl=1,slaveAddress=0x41)
try:
while True:
print(s_i2c.get())
except KeyboardInterrupt:
pass
Nevedeli byste nekdo co s tim? Kdyztak predem diky za pripadne napady.
Řešení dotazu:
>>> %Run pico_analyzer_prubezny_sber.py inputPin0:|||||||.....||||||....||||||......||||||.......||||||.....||||||.....|||||||....|||||||.......|||||. inputPin1:....|||||||||..........||||||||..........|||||||||...........|||||||||||............||||||||||...... inputPin2:.......|||||||||||||||||||..................|||||||||||||||||||||....................||||||||||||||| inputPin3:........|||||||||||||||||||||||||||||||||||||....................................||||||||||||||||||| inputPin4:.....||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||...........................Generator impulzu pro t85:
#define PIN_1 0
#define PIN_2 1
#define PIN_3 2
#define PIN_4 3
#define PIN_5 4
unsigned long naposled_aktivni_pin_1 = micros();
unsigned long prodleva_pin_1 = 64;
byte stav_pin_1 = LOW;
unsigned long naposled_aktivni_pin_2 = micros();
unsigned long prodleva_pin_2 = 128;
byte stav_pin_2 = LOW;
unsigned long naposled_aktivni_pin_3 = micros();
unsigned long prodleva_pin_3 = 256;
byte stav_pin_3 = LOW;
unsigned long naposled_aktivni_pin_4 = micros();
unsigned long prodleva_pin_4 = 512;
byte stav_pin_4 = LOW;
unsigned long naposled_aktivni_pin_5 = micros();
unsigned long prodleva_pin_5 = 1024;
byte stav_pin_5 = LOW;
void setup() {
pinMode(PIN_1, OUTPUT);
pinMode(PIN_2, OUTPUT);
pinMode(PIN_3, OUTPUT);
pinMode(PIN_4, OUTPUT);
pinMode(PIN_5, OUTPUT);
}
void loop() {
unsigned long soucasny_cas = micros();
// Vystup 1
if (soucasny_cas - naposled_aktivni_pin_1 > prodleva_pin_1)
{
if (stav_pin_1 == LOW)
{
stav_pin_1 = HIGH;
}
else
{
stav_pin_1 = LOW;
}
digitalWrite(PIN_1, stav_pin_1);
naposled_aktivni_pin_1 = soucasny_cas;
}
// Vystup 2
if (soucasny_cas - naposled_aktivni_pin_2 > prodleva_pin_2)
{
if (stav_pin_2 == LOW)
{
stav_pin_2 = HIGH;
}
else
{
stav_pin_2 = LOW;
}
digitalWrite(PIN_2, stav_pin_2);
naposled_aktivni_pin_2 = soucasny_cas;
}
// Vystup 3
if (soucasny_cas - naposled_aktivni_pin_3 > prodleva_pin_3)
{
if (stav_pin_3 == LOW)
{
stav_pin_3 = HIGH;
}
else
{
stav_pin_3 = LOW;
}
digitalWrite(PIN_3, stav_pin_3);
naposled_aktivni_pin_3 = soucasny_cas;
}
// Vystup 4
if (soucasny_cas - naposled_aktivni_pin_4 > prodleva_pin_4)
{
if (stav_pin_4 == LOW)
{
stav_pin_4 = HIGH;
}
else
{
stav_pin_4 = LOW;
}
digitalWrite(PIN_4, stav_pin_4);
naposled_aktivni_pin_4 = soucasny_cas;
}
// Vystup 5
if (soucasny_cas - naposled_aktivni_pin_5 > prodleva_pin_5)
{
if (stav_pin_5 == LOW)
{
stav_pin_5 = HIGH;
}
else
{
stav_pin_5 = LOW;
}
digitalWrite(PIN_5, stav_pin_5);
naposled_aktivni_pin_5 = soucasny_cas;
}
}
Merici skript pro pico:
from machine import Pin
import time
#led = Pin(25, Pin.OUT) # setup pin 25 as an output, this is the onboard LED.
inputPin1 = Pin(11, Pin.IN, Pin.PULL_DOWN) # setup pin 0 as an input with a pull down resistor.
inputPin2 = Pin(12, Pin.IN, Pin.PULL_DOWN)
inputPin3 = Pin(13, Pin.IN, Pin.PULL_DOWN)
inputPin4 = Pin(14, Pin.IN, Pin.PULL_DOWN)
inputPin5 = Pin(15, Pin.IN, Pin.PULL_DOWN)
#Dstore = [[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0]]
Dstore = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
#while True: # create a loop
for i in range(0, 100):
Dstore[0][i] = inputPin1.value() # Read the input pin 0
Dstore[1][i] = inputPin2.value() # Read the input pin 1
Dstore[2][i] = inputPin3.value() # Read the input pin 2
Dstore[3][i] = inputPin4.value() # Read the input pin 3
Dstore[4][i] = inputPin5.value() # Read the input pin 4
#time.sleep(1) #1Hz
#time.sleep_ms(1000) #1Hz
#time.sleep_us(1000000) #1Hz
time.sleep_us(10)
for i in range(0, 5): # loop to iterate through the channels
print("inputPin{}:".format(i), end='') # print the input pin label
for j in range(0, 100): # loop to iterate through the samples
if Dstore[i][j] == 0: # check to see if the sample is low
print(".", end='') # print _ if it is low
elif Dstore[i][j] == 1: # check to see if the sample is high
print("|", end='') # print - if it is high
print() # print a new line after each channel
#print() # print a line in between each group of inputs
#led.toggle() # toggle the LED so we know the code is running.
#time.sleep(1) # delay for 1 second.
Pokud ted spustim z t85 i2c master skript, mel bych na picu namerit alespon nejake vyzvy ke komunikaci. Pokud se mi podari skloubit na picu i2c slave s tim mericim skriptem, mohl bych monitorovat i2c sbernici mezi obema cipy. Zatim jsem mel trvalou 0 na SCK a trvalou 1 na SDA.
>>> %Run pico_analyzer_prubezny_sber.py inputPin0:|||||||||...|.|||||||||||||.....||||||||||||||.....|||||||||||||.....|||||||||||||.....||||||||||||| inputPin1:.................................................................................................... inputPin2:.......||.|..||..........|||.|.|............||....||..........|.|.|.|...........|.|.|.|...........|. inputPin3:.................................................................................................... inputPin4:....................................................................................................Vnitrni citac t85 nastaven na 8MHz, upraveny skript:
#include <TinyWireM.h> // I2C Master lib for ATTinys which use USI
#define PICO_ADDR 0x41 //0x055 zakladni adresa pica
//int led = 3;
void setup(){
//pinMode(led, OUTPUT);
//digitalWrite(led, LOW);
TinyWireM.begin(); // initialize I2C lib
delay(1000);
}
void loop(){
// digitalWrite(led, HIGH);
// delay(1000);
// digitalWrite(led, LOW);
// delay(1000);
// digitalWrite(led, HIGH);
// delay(1000);
// digitalWrite(led, LOW);
// delay(1000);
// digitalWrite(led, HIGH);
//delay(1000);
//digitalWrite(led, LOW);
//delay(1000);
Posli_jeden_byte();
//delay(1000);
//delay(.1); //milisekund
delayMicroseconds(128);
//Posli_text();
//delay(1000);
//delay(.2);
//delayMicroseconds(256);
}
void Posli_jeden_byte(){
TinyWireM.beginTransmission(PICO_ADDR);
TinyWireM.send(0xAB);
TinyWireM.endTransmission();
}
void Posli_text(){
TinyWireM.beginTransmission(PICO_ADDR);
char myString[12] = "Nazdar!";
for(byte i = 0; i <= strlen(myString); i++)
{
TinyWireM.send(myString[i]);
}
TinyWireM.endTransmission();
}
Predpokladejme ze knihovna TinyWireM vykazuje nejakou aktivitu (pod rozlisovaci schopnosti meho 'analyzeru'), jeste je treba nejak overit funkcnost slave skriptu pro pico.
>>> %Run i2cSlave.py Co je? Nazdar! I2C z T85: 78 I2C z T85: 97 I2C z T85: 122 I2C z T85: 100 I2C z T85: 97 I2C z T85: 114 I2C z T85: 33 I2C z T85: 0 I2C z T85: 171 I2C z T85: 78 I2C z T85: 97 I2C z T85: 122 I2C z T85: 100 I2C z T85: 97 I2C z T85: 114 I2C z T85: 33 I2C z T85: 0 I2C z T85: 171Stacilo zrusit
if __name__ == "__main__": ve slave skriptu na picu a prikazy pod tim pouzit primo. Ted uz vicemene zbyva jen poskladat z prijatych cisel poskladat puvodni text. Diky vsem za uzitecne tipy.
Tiskni
Sdílej: