OpenChaos.dev je 'samovolně se vyvíjející open source projekt' s nedefinovaným cílem. Každý týden mohou lidé hlasovat o návrzích (pull requestech), přičemž vítězný návrh se integruje do kódu projektu (repozitář na GitHubu). Hlasováním je možné změnit téměř vše, včetně tohoto pravidla. Hlasování končí vždy v neděli v 9:00 UTC.
Byl vydán Debian 13.3, tj. třetí opravná verze Debianu 13 s kódovým názvem Trixie a Debian 12.13, tj. třináctá opravná verze Debianu 12 s kódovým názvem Bookworm. Řešeny jsou především bezpečnostní problémy, ale také několik vážných chyb. Instalační média Debianu 13 a Debianu 12 lze samozřejmě nadále k instalaci používat. Po instalaci stačí systém aktualizovat.
Na stránkách Evropské komise, na portálu Podělte se o svůj názor, se lze do 3. února podělit o názor k iniciativě Evropské otevřené digitální ekosystémy řešící přístup EU k otevřenému softwaru.
Společnost Kagi stojící za stejnojmenným placeným vyhledávačem vydala (𝕏) alfa verzi linuxové verze (flatpak) svého proprietárního webového prohlížeče Orion.
Firma Bose se po tlaku uživatelů rozhodla, že otevře API svých chytrých reproduktorů SoundTouch, což umožní pokračovat v jejich používání i po plánovaném ukončení podpory v letošním roce. Pro ovládání také bude stále možné využívat oficiální aplikaci, ale už pouze lokálně bez cloudových služeb. Dokumentace API dostupná zde (soubor PDF).
Jiří Eischmann se v příspěvku na svém blogu rozepsal o open source AdGuard Home jako domácí ochraně nejen před reklamou. Adguard Home není plnohodnotným DNS resolverem, funguje jako DNS forwarder s možností filtrování. To znamená, že když přijme DNS dotaz, sám na něj neodpoví, ale přepošle ho na vybraný DNS server a odpovědi zpracovává a filtruje dle nastavených pravidel a následně posílá zpět klientům. Dá se tedy používat k blokování reklamy a škodlivých stránek a k rodičovské kontrole na úrovni DNS.
AI Claude Code od Anthropicu lépe rozumí frameworku Nette, tj. open source frameworku pro tvorbu webových aplikací v PHP. David Grudl napsal plugin Nette pro Claude Code.
Byla vydána prosincová aktualizace aneb nová verze 1.108 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.108 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Na lasvegaském veletrhu elektroniky CES byl předveden prototyp notebooku chlazeného pomocí plazmových aktuátorů (DBD). Ačkoliv se nejedná o první nápad svého druhu, nepochybně to je první ukázka praktického použití tohoto způsobu chlazení v běžné elektronice. Co činí plazmové chladící akční členy technologickou výzvou je především vysoká produkce jedovatého ozonu, tu se prý podařilo firmě YPlasma zredukovat dielektrickou
… více »Patchouli je open source implementace EMR grafického tabletu (polohovací zařízení). Projekt je hostován na GitLabu.
P ≠ NP, pokud řešení teprve hledám a
P = NP, jsou ty záblesky pravdy
Heuréka! :D ...
... Nefunguje to :(
(cimz samozrejme netvrdim, ze tam ta rovnost je)
Rozlišuj dokazuje a ukazuje spíše na.
P=NP vede? Lidi nevěří na šifrování?On už někdo dokázal, že faktorizace je NPC?
Pokud P=NP, tak sifrovani postavene na obtiznosti faktorizace je rozlousknutelne v polynomialnim case ...Zrovna tak je ale možné, že P≠NP, přičemž faktorizace je v P. Čili tak nebo tak, obvyklé šifrování je založeno na víře bez důkazu.
P+NP, to bude tranzistor 
Nemůžu uvěřit, že tomu někdo nemůže uvěřit.
(forall x)(forall y)(F(x,y) <-> G(x)) <-> (forall x)( (forall y)F(x, y) <-> G(x)) (kdyz y neni volna v G(x)).
Teď jsem si tu změť závorek prohlédl pořádně a vypadá to, že celý optický trik spočívá v tom, co přesně myslíte nejednoznačným zápisem "(forall y)F(x, y) <-> G(x)". Pokud to znamená "∀y: [F(x,y) ⇔ G(x)]", pak je sice vaše (hlavní) ekvivalence pravdivá, ale pro výše uvedený příklad jsou obě strany nepravdivé. Pokud to znamená "[∀y: F(x,y)] ⇔ G(x)", pak to pravda není a výše máte protipříklad.
Takže ještě jednou, co jsem chtěl říct: pokud napíšu "V(p,q)" bez jakékoli kvantifikace, tak se tím obvykle myslí "∀p,q: V(p,q)", ne že k nějakým podvýrazům začnu náhodně připisovat kvantifikátory tak, aby to vyšlo. Koneckonců i reakce autora toho původního příspěvku naznačuje, že i on to tak myslel.
Takže ještě jednou, co jsem chtěl říct: pokud napíšu "V(p,q)" bez jakékoli kvantifikace, tak se tím obvykle myslí "∀p,q: V(p,q)"Něco takového matfyzáci učili na predikátové logice jako pravidlo generalizace.
Něco takového matfyzáci učili na predikátové logice jako pravidlo generalizace.Ono to v prve rade vychazi uz ze semantiky formuli s volnymi promennymi. Pravidlo generalizace je pak jen syntakticke pravidlo, ktere zajistuje, aby k semanticke 'ekviplatnosti' byla i syntakticka 'ekvidokazatelnost'.
akže ještě jednou, co jsem chtěl říct: pokud napíšu "V(p,q)" bez jakékoli kvantifikace, tak se tím obvykle myslí "∀p,q: V(p,q)", ne že k nějakým podvýrazům začnu náhodně připisovat kvantifikátory tak, aby to vyšloTo je pravda, ale je treba si uvedomit dve veci: Zaprve, protoze se 'implicitne okvantifikuje' cela logicka formule, je treba vedet, kde konci logicke formule a kde uz jsou metalogicke konstrukce. Napr. formule "F(x) <-> G(x)" bude ekvivalentni "(forall x)(F(X) <-> G(x))", zatimco tvrzeni "F(x) je pravdive iff G(x) je pravdive" (kde F(x) a G(x) jsou formule, zbytek jsou metalogicke konstrukce) bude ekvivalentni "(forall x)F(x) je pravdive iff (forall x)G(x) je pravdive" . Zadruhe, je treba rozlisit symboly promennych a symboly konstant - k 'implicitnimu okvantifikovani' dojde pouze u promennych (ty maji vzdy platnost nejvyse v ramci jedne formule), zatimco konstanty si zachovavaji stejny vyznam v cele sade formuli. Co je promenna a co je konstanta je dano pouzitym jazykem (tedy defacto konvenci) a muze se lisit aplikace od aplikace. Pokud tedy interpretuji nezavisly post, zbyva akorat hadat z kontextu. To, ze druha cast puvodniho Davkolova postu (za 'iff' vcetne) je psana plaintextem a navic vyuziva konstrukce primo nepopsatelne v logice prvniho radu (odkazuje se na pouzitou operaci), svadi k interpretaci, ze formule je pouze "P=NP" a zbytek je matematicky kontext. Protoze 'N' se vyskytuje jak ve formuli tak v kontextu, tak nemuze jit o promennou (to by nedavalo smysl), ale o konstantu. Z toho vysla argumentace v postu #25.
Očísluje si všechny možné algoritmy Alg_0, Alg_1, Alg_2 ...Tohle vypada jak standardni Levinuv prohledavaci algoritmus, ten ma ale jednu teoretickou vadu - protoze je schopen validovat jen pozitivni reseni (pokud nemame konstruktivne NP=co-NP nebo horni odhad na polynom u polynomialniho algorimu pro dany NP-uplny problem), tak se zacykli v pripade, kdy odpoved ma byt negativni. Coz tedy znamena, ze nesplnuje definici polynomialnich rozhodovacich algoritmu (kde se pozaduje zastaveni vzdy) vymezujicich tridu P. Ale mozna to je nejaky vylepseny argument ktery neznam, pak bych prosil o detaily. I kdybychom ale meli takto vylepseny algoritmus, tak to striktne vzato nevylucuje, ze by samotne tvrzeni 'P=NP' bylo dokazano ciste nekonstruktivnimi metodami. On takovy univerzalni algoritmus totiz neprinasi moc vhledu do te problematiky, coz by snad explicitni konstrukce mohla.
že bude existovat algoritmus, o kterém nebude možné určit, zda v polynomiálním čase běží nebo ne, ale určitě nebude existovat algoritmus, o kterém to půjde dokázat.Tady mi neni jasne, co presne tou vetou myslis. Moznost 1 znamena, ze plati jedna z techto trech moznosti: 1a. v N plati P=NP, tedy vhodny algoritmus existuje, ale prokazatelne to o nem nejde dokazat (v pouzitem formalismu) 1b. v N neplati P=NP, ale ani tohle prokazatelne nelze dokazat 1c. nejaky novy prevratny pohled na logiku, aritmetiku a prirozena cisla. AFAIK ani jednu z techto trech moznosti nemuzu vyloucit, ale rad se necham poucit.
Tohle vypada jak standardni Levinuv prohledavaci algoritmus, ten ma ale jednu teoretickou vadu - protoze je schopen validovat jen pozitivni reseni. Ale mozna to je nejaky vylepseny argument ktery neznam, pak bych prosil o detaily.Je to jen Levinuv algoritmus. Slysel jsem to kdysi od jednoho cloveka a neuvedomil jsem si tenhle zadrhel. Kdyz tak se ho zeptam, jestli k tomu vi neco vic.
On takovy univerzalni algoritmus totiz neprinasi moc vhledu do te problematiky, coz by snad explicitni konstrukce mohla.S tim souhlasim.
1a. v N plati P=NP, tedy vhodny algoritmus existuje, ale prokazatelne to o nem nejde dokazat (v pouzitem formalismu) 1b. v N neplati P=NP, ale ani tohle prokazatelne nelze dokazatTak nejak jsem si to predstavoval
. A jeste tedy (jestli ten Levinuv algoritmus nejde vylepsit) muzem k 2. dodat, ze by i v onom pripade mohlo platit 1a., zatimco v 1. by prokazatelne ani neslo dokazat, ze nastala moznost 1a.
Algoritmus ale není program.Rozdil mezi algoritmem a programem neni moc relevantni. Vsechny pouzivane formalizace pojmu 'algoritmus' jsou ve vysledku ekvivalentni beznym programum (viz Church-Turing thesis).
Například algoritmus popisující práci nedeterministického automatu operuje s orákulem, které umí rozhodnout, zda-li existuje řešení. Implementaci tohoto algoritmu – tedy program – jsem ještě neviděl.Tady ale neni rozdil v tom, ze jedno by bylo algoritmus a druhy program, ale to, ze v prvnim pripade implicitne predpokladas jiny vypocetni model nez v druhem. Pokud tvuj vypocetni model predpoklada moznost dotazu nejakeho typu orakula, tak ten dotaz muzes pouzit jak v (neformalnim) algoritmu, tak ve (formalne definovanem) programu. Pokud ne, tak ho nemuzes pouzit ani v jednom.
Mimochodem, pokud by to opravdu šlo, tak by to znamenalo částečně P==NP,Neznamenalo, protoze tridy P, NP jsou definovane pro konkretni vypocetni model (turinguv stroj bez takove periferie a modely ekvivalentni vypocetni sily). Existuji relativizovane definice, ale ty se znaci trochu jinak (napr P(X) pro turiguv stroj s orakulem pro mnozinu X). Takze spis by to znamenalo P' >= NP, kde P' je trida uloh polynomielne resitelnych na turingove stroji s tou casovou smyckou.
SECAM
Tiskni
Sdílej: