Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Open source modální textový editor Helix, inspirovaný editory Vim, Neovim či Kakoune, byl vydán ve verzi 25.07. Přehled novinek se záznamy terminálových sezení v asciinema v oznámení na webu. Detailně v CHANGELOGu na GitHubu.
Americký výrobce čipů Nvidia získal od vlády prezidenta Donalda Trumpa souhlas s prodejem svých pokročilých počítačových čipů používaných k vývoji umělé inteligence (AI) H20 do Číny. Prodej těchto čipů speciálně upravených pro čínský trh by tak mohl být brzy obnoven, uvedla firma na svém blogu. Americká vláda zakázala prodej v dubnu, v době eskalace obchodního sporu mezi oběma zeměmi. Tehdy to zdůvodnila obavami, že by čipy mohla využívat čínská armáda.
3D software Blender byl vydán ve verzi 4.5 s prodlouženou podporou. Podrobnosti v poznámkách k vydání. Videopředstavení na YouTube.
Open source webový aplikační framework Django slaví 20. narozeniny.
V Brestu dnes začala konference vývojářů a uživatelů linuxové distribuce Debian DebConf25. Na programu je řada zajímavých přednášek. Sledovat je lze online.
Před 30 lety, tj. 14. července 1995, se začala používat přípona .mp3 pro soubory s hudbou komprimovanou pomocí MPEG-2 Audio Layer 3.
P ≠ NP, pokud řešení teprve hledám a
P = NP, jsou ty záblesky pravdy
Heuréka! :D ...
... Nefunguje to :(
Rozlišuj dokazuje a ukazuje spíše na.
P=NP vede? Lidi nevěří na šifrování?On už někdo dokázal, že faktorizace je NPC?
Pokud P=NP, tak sifrovani postavene na obtiznosti faktorizace je rozlousknutelne v polynomialnim case ...Zrovna tak je ale možné, že P≠NP, přičemž faktorizace je v P. Čili tak nebo tak, obvyklé šifrování je založeno na víře bez důkazu.
P+NP, to bude tranzistor
Nemůžu uvěřit, že tomu někdo nemůže uvěřit.
(forall x)(forall y)(F(x,y) <-> G(x)) <-> (forall x)( (forall y)F(x, y) <-> G(x))
(kdyz y neni volna v G(x)).
Teď jsem si tu změť závorek prohlédl pořádně a vypadá to, že celý optický trik spočívá v tom, co přesně myslíte nejednoznačným zápisem "(forall y)F(x, y) <-> G(x)". Pokud to znamená "∀y: [F(x,y) ⇔ G(x)]", pak je sice vaše (hlavní) ekvivalence pravdivá, ale pro výše uvedený příklad jsou obě strany nepravdivé. Pokud to znamená "[∀y: F(x,y)] ⇔ G(x)", pak to pravda není a výše máte protipříklad.
Takže ještě jednou, co jsem chtěl říct: pokud napíšu "V(p,q)" bez jakékoli kvantifikace, tak se tím obvykle myslí "∀p,q: V(p,q)", ne že k nějakým podvýrazům začnu náhodně připisovat kvantifikátory tak, aby to vyšlo. Koneckonců i reakce autora toho původního příspěvku naznačuje, že i on to tak myslel.
Takže ještě jednou, co jsem chtěl říct: pokud napíšu "V(p,q)" bez jakékoli kvantifikace, tak se tím obvykle myslí "∀p,q: V(p,q)"Něco takového matfyzáci učili na predikátové logice jako pravidlo generalizace.
Něco takového matfyzáci učili na predikátové logice jako pravidlo generalizace.Ono to v prve rade vychazi uz ze semantiky formuli s volnymi promennymi. Pravidlo generalizace je pak jen syntakticke pravidlo, ktere zajistuje, aby k semanticke 'ekviplatnosti' byla i syntakticka 'ekvidokazatelnost'.
akže ještě jednou, co jsem chtěl říct: pokud napíšu "V(p,q)" bez jakékoli kvantifikace, tak se tím obvykle myslí "∀p,q: V(p,q)", ne že k nějakým podvýrazům začnu náhodně připisovat kvantifikátory tak, aby to vyšloTo je pravda, ale je treba si uvedomit dve veci: Zaprve, protoze se 'implicitne okvantifikuje' cela logicka formule, je treba vedet, kde konci logicke formule a kde uz jsou metalogicke konstrukce. Napr. formule "F(x) <-> G(x)" bude ekvivalentni "(forall x)(F(X) <-> G(x))", zatimco tvrzeni "F(x) je pravdive iff G(x) je pravdive" (kde F(x) a G(x) jsou formule, zbytek jsou metalogicke konstrukce) bude ekvivalentni "(forall x)F(x) je pravdive iff (forall x)G(x) je pravdive" . Zadruhe, je treba rozlisit symboly promennych a symboly konstant - k 'implicitnimu okvantifikovani' dojde pouze u promennych (ty maji vzdy platnost nejvyse v ramci jedne formule), zatimco konstanty si zachovavaji stejny vyznam v cele sade formuli. Co je promenna a co je konstanta je dano pouzitym jazykem (tedy defacto konvenci) a muze se lisit aplikace od aplikace. Pokud tedy interpretuji nezavisly post, zbyva akorat hadat z kontextu. To, ze druha cast puvodniho Davkolova postu (za 'iff' vcetne) je psana plaintextem a navic vyuziva konstrukce primo nepopsatelne v logice prvniho radu (odkazuje se na pouzitou operaci), svadi k interpretaci, ze formule je pouze "P=NP" a zbytek je matematicky kontext. Protoze 'N' se vyskytuje jak ve formuli tak v kontextu, tak nemuze jit o promennou (to by nedavalo smysl), ale o konstantu. Z toho vysla argumentace v postu #25.
Očísluje si všechny možné algoritmy Alg_0, Alg_1, Alg_2 ...Tohle vypada jak standardni Levinuv prohledavaci algoritmus, ten ma ale jednu teoretickou vadu - protoze je schopen validovat jen pozitivni reseni (pokud nemame konstruktivne NP=co-NP nebo horni odhad na polynom u polynomialniho algorimu pro dany NP-uplny problem), tak se zacykli v pripade, kdy odpoved ma byt negativni. Coz tedy znamena, ze nesplnuje definici polynomialnich rozhodovacich algoritmu (kde se pozaduje zastaveni vzdy) vymezujicich tridu P. Ale mozna to je nejaky vylepseny argument ktery neznam, pak bych prosil o detaily. I kdybychom ale meli takto vylepseny algoritmus, tak to striktne vzato nevylucuje, ze by samotne tvrzeni 'P=NP' bylo dokazano ciste nekonstruktivnimi metodami. On takovy univerzalni algoritmus totiz neprinasi moc vhledu do te problematiky, coz by snad explicitni konstrukce mohla.
že bude existovat algoritmus, o kterém nebude možné určit, zda v polynomiálním čase běží nebo ne, ale určitě nebude existovat algoritmus, o kterém to půjde dokázat.Tady mi neni jasne, co presne tou vetou myslis. Moznost 1 znamena, ze plati jedna z techto trech moznosti: 1a. v N plati P=NP, tedy vhodny algoritmus existuje, ale prokazatelne to o nem nejde dokazat (v pouzitem formalismu) 1b. v N neplati P=NP, ale ani tohle prokazatelne nelze dokazat 1c. nejaky novy prevratny pohled na logiku, aritmetiku a prirozena cisla. AFAIK ani jednu z techto trech moznosti nemuzu vyloucit, ale rad se necham poucit.
Tohle vypada jak standardni Levinuv prohledavaci algoritmus, ten ma ale jednu teoretickou vadu - protoze je schopen validovat jen pozitivni reseni. Ale mozna to je nejaky vylepseny argument ktery neznam, pak bych prosil o detaily.Je to jen Levinuv algoritmus. Slysel jsem to kdysi od jednoho cloveka a neuvedomil jsem si tenhle zadrhel. Kdyz tak se ho zeptam, jestli k tomu vi neco vic.
On takovy univerzalni algoritmus totiz neprinasi moc vhledu do te problematiky, coz by snad explicitni konstrukce mohla.S tim souhlasim.
1a. v N plati P=NP, tedy vhodny algoritmus existuje, ale prokazatelne to o nem nejde dokazat (v pouzitem formalismu) 1b. v N neplati P=NP, ale ani tohle prokazatelne nelze dokazatTak nejak jsem si to predstavoval
Algoritmus ale není program.Rozdil mezi algoritmem a programem neni moc relevantni. Vsechny pouzivane formalizace pojmu 'algoritmus' jsou ve vysledku ekvivalentni beznym programum (viz Church-Turing thesis).
Například algoritmus popisující práci nedeterministického automatu operuje s orákulem, které umí rozhodnout, zda-li existuje řešení. Implementaci tohoto algoritmu – tedy program – jsem ještě neviděl.Tady ale neni rozdil v tom, ze jedno by bylo algoritmus a druhy program, ale to, ze v prvnim pripade implicitne predpokladas jiny vypocetni model nez v druhem. Pokud tvuj vypocetni model predpoklada moznost dotazu nejakeho typu orakula, tak ten dotaz muzes pouzit jak v (neformalnim) algoritmu, tak ve (formalne definovanem) programu. Pokud ne, tak ho nemuzes pouzit ani v jednom.
Mimochodem, pokud by to opravdu šlo, tak by to znamenalo částečně P==NP,Neznamenalo, protoze tridy P, NP jsou definovane pro konkretni vypocetni model (turinguv stroj bez takove periferie a modely ekvivalentni vypocetni sily). Existuji relativizovane definice, ale ty se znaci trochu jinak (napr P(X) pro turiguv stroj s orakulem pro mnozinu X). Takze spis by to znamenalo P' >= NP, kde P' je trida uloh polynomielne resitelnych na turingove stroji s tou casovou smyckou.
SECAM
Tiskni
Sdílej: