Byla vydána nová major verze 5.0.0 svobodného multiplatformního nástroje BleachBit (GitHub, Wikipedie) určeného především k efektivnímu čištění disku od nepotřebných souborů.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za duben (YouTube).
Provozovatel čínské sociální sítě TikTok dostal v Evropské unii pokutu 530 milionů eur (13,2 miliardy Kč) za nedostatky při ochraně osobních údajů. Ve svém oznámení to dnes uvedla irská Komise pro ochranu údajů (DPC), která jedná jménem EU. Zároveň TikToku nařídila, že pokud správu dat neuvede do šesti měsíců do souladu s požadavky, musí přestat posílat data o unijních uživatelích do Číny. TikTok uvedl, že se proti rozhodnutí odvolá.
Společnost JetBrains uvolnila Mellum, tj. svůj velký jazykový model (LLM) pro vývojáře, jako open source. Mellum podporuje programovací jazyky Java, Kotlin, Python, Go, PHP, C, C++, C#, JavaScript, TypeScript, CSS, HTML, Rust a Ruby.
Vývojáři Kali Linuxu upozorňují na nový klíč pro podepisování balíčků. K původnímu klíči ztratili přístup.
V březnu loňského roku přestal být Redis svobodný. Společnost Redis Labs jej přelicencovala z licence BSD na nesvobodné licence Redis Source Available License (RSALv2) a Server Side Public License (SSPLv1). Hned o pár dní později vznikly svobodné forky Redisu s názvy Valkey a Redict. Dnes bylo oznámeno, že Redis je opět svobodný. S nejnovější verzí 8 je k dispozici také pod licencí AGPLv3.
Oficiální ceny Raspberry Pi Compute Modulů 4 klesly o 5 dolarů (4 GB varianty), respektive o 10 dolarů (8 GB varianty).
Byla vydána beta verze openSUSE Leap 16. Ve výchozím nastavení s novým instalátorem Agama.
Devadesátková hra Brány Skeldalu prošla portací a je dostupná na platformě Steam. Vyšel i parádní blog autora o portaci na moderní systémy a platformy včetně Linuxu.
Lidi dělají divné věci. Například spouští Linux v Excelu. Využít je emulátor RISC-V mini-rv32ima sestavený jako knihovna DLL, která je volaná z makra VBA (Visual Basic for Applications).
Běžící blákno, které může takto rychle získat zámek ...
struct mutex { atomic_t count; spinlock_t wait_lock; struct list_head wait_list; };Jádro pudla je v tomto nižším patře = v kernelovém mutexu. Všimněte si položky "struct list_head wait_list" - to je nějaký spojový seznam "čekatelů na zámek". Uvnitř páru volání mutex_lock()/mutex_unlock() existují dvě cesty: rychlá a pomalá. Pomalá cesta bere spinlock a hraje si s wait_listem (seznam čekajících procesů) = při mutex_lock() se vlákno do seznamu zapíše, při mutex_unlock() se vyškrtne. Naproti tomu rychlá cesta uvnitř mutex_lock() za příznivých okolností jenom "proletí", nepřidává se do wait_listu = nebere spinlock, pouze si atomicky (s podporou CPU) dvakrát sáhne na položku count. Podobně uvnitř mutex_unlock(). Za příznivých okolností, konkrétně když o mutex soupeří dvě vlákna, a to ještě na konci delší "dávky" soupeřících vláken:
Jádro pudla je v tomto nižším patře = v kernelovém mutexu.Strucne receno, mutex_lock() v jednom threadu uspeje drive nez skonci mutex_unlock() v druhem a ten druhy stale pristupuje k interni mutexove strukture. Pokud se na takove chovani podivam z hlediska konvencni semantiky posixovych mutexu (tedy pokud by se tak chovali userspace mutexy), tak mi to jako zavadne neprijde (primarni cil - vzajemne vylouceni kodu *uvnitr* mutexove sekce - je zajisten), akorat mutex_destroy() by musel vzit spinlock a tim se ujistit, ze paralelni mutex_unlock() uz skoncil. To by mohlo byt i adekvatni reseni pro kernelove mutexy.
delete
kdekoliv mimo destruktor smart pointerů pokládám za velmi špatný kód* a race conditions dealokací opět dobře řeší smart pointery používající atomický reference counter. Zde je to zesložitěné tím, že se tam snaží aktivně spouštět jiné vlákno, ale s něčím takovým se v user space setkáte jen výjimečně.
* Schválně za jak dlouho přijdete na to, že tohle leakuje?
class Socket { public: Socket() { if (!connect()) throw std::exception(); } bool connect() { return false; } }; class Test { public: constexpr size_t BUF_SIZE = 4096; char *buf; Socket sock; Test() : buf(new char[BUF_SIZE]()) {} ~Test() { delete[] buf; } }
sock
), tak se nezavolá tělo destruktoru; nakonec to je logické, objekt se ještě nevytvořil, a tak není co ničit. C++ v takovém případě volá destruktory všech již zkonstruovaných členů a předků (pokud by Test
měl předka, tak jeho destruktor se zavolá), zde tedy program zavolá destruktor buf
, jenže to je char *
, který se sám nedealokuje. Pokud by buf
byl smart pointer, tak jeho destruktor tu paměť uklidí.
S výjimkami není problém, pokud dodržujete RAII, tedy že každý zabraný zdroj má vlastní „hlídací“ objekt, který jej v destruktoru uvolní. A tohle pravidlo právě vede k tomu, aby delete
používaly akorát smart pointery (a výrazně zjednodušuje hlídání zdrojů oproti C ~Test() try { ⋮ // Volání funkcí, které mohou vyhodit výjimku, kromě destruktorů — tam by si to měl řešit ničené objekty } catch (...) { if (std::uncaught_exception()) // Případně nějaké logování, pokud vás to zajímá return; // catch blok, kterým končí konstruktor či destruktor, má implicitní rethrow }
noexcept
, je potřeba to zrušit:
~Test noexcept(false)
To je syntaxe ve stylu: „Půjdu na nákup ne.“ To snad museli vymyslet Francouzi.Spíš lidi z Cisca
no shutdown
)
Ale ono zrovna v tomhle případě to je namístě, u drtivé většina destruktoru je noexcept
vhodný.
delete
jsem od té doby, co delete
u kódu, který spravuji, smí používat jen smart pointery, neviděl.
Jádro není v C++ hlavně proto, že v roce 1991 byla podpora C++ dost mizerná. A taky proto, že v jádře bývá problém s implementací výjimek a RTTI, tak se to tam nepoužívá, čímž se C++ snižuje na C with classes. A to už pak rovnou jde psát v C.
Tiskni
Sdílej: