Byla vydána (𝕏) srpnová aktualizace aneb nová verze 1.104 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.104 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Spotify spustilo přehrávání v bezztrátové kvalitě. V předplatném Spotify Premium.
Spoluzakladatel a předseda správní rady americké softwarové společnosti Oracle Larry Ellison vystřídal spoluzakladatele automobilky Tesla a dalších firem Elona Muska na postu nejbohatšího člověka světa. Hodnota Ellisonova majetku díky dnešnímu prudkému posílení ceny akcií Oraclu odpoledne vykazovala nárůst o více než 100 miliard dolarů a dosáhla 393 miliard USD (zhruba 8,2 bilionu Kč). Hodnota Muskova majetku činila zhruba 385 miliard dolarů.
Bylo vydáno Eclipse IDE 2025-09 aneb Eclipse 4.37. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
T-Mobile od 15. září zpřístupňuje RCS (Rich Communication Services) zprávy i pro iPhone.
Společnost ARM představila platformu Arm Lumex s Arm C1 CPU Cluster a Arm Mali G1-Ultra GPU pro vlajkové chytré telefony a počítače nové generace.
Unicode Consortium, nezisková organizace koordinující rozvoj standardu Unicode, oznámila vydání Unicode 17.0. Přidáno bylo 4 803 nových znaků. Celkově jich je 159 801. Přibylo 7 nových Emoji.
Apple představil (YouTube) telefony iPhone 17 Pro a iPhone 17 Pro Max, iPhone 17 a iPhone Air, sluchátka AirPods Pro 3 a hodinky Watch Series 11, Watch SE 3 a Watch Ultra 3.
Realtimová strategie Warzone 2100 (Wikipedie) byla vydána ve verzi 4.6.0. Podrobný přehled novinek, změn a oprav v ChangeLogu na GitHubu. Nejnovější verzi Warzone 2100 lze již instalovat také ze Snapcraftu a Flathubu.
Polské vývojářské studio CD Projekt Red publikovalo na Printables.com 3D modely z počítačové hry Cyberpunk 2077.
Předem se omlouvám, za delší popis situace. Mám dvě tabulky, jedna je velká (milion záznamů) a druhá je číselník.
Struktura tabulek:
CREATE TABLE `tab` ( `id` INT NOT NULL AUTO_INCREMENT, `login` char(1) NOT NULL, PRIMARY KEY (`id`), KEY `login` ( `login` ) ) ENGINE=MyISAM; CREATE TABLE `user` ( `login` char(1) NOT NULL, `name` varchar(30) NOT NULL, PRIMARY KEY ( `login` ) ) ENGINE=MyISAM;
Naplním daty číselník:
INSERT INTO `user` (`login`, `name`) VALUES ('a', 'AAA'); INSERT INTO `user` (`login`, `name`) VALUES ('b', 'BBB'); INSERT INTO `user` (`login`, `name`) VALUES ('c', 'CCC'); INSERT INTO `user` (`login`, `name`) VALUES ('d', 'DDD'); INSERT INTO `user` (`login`, `name`) VALUES ('e', 'EEE'); INSERT INTO `user` (`login`, `name`) VALUES ('f', 'FFF'); INSERT INTO `user` (`login`, `name`) VALUES ('g', 'GGG'); INSERT INTO `user` (`login`, `name`) VALUES ('h', 'HHH'); INSERT INTO `user` (`login`, `name`) VALUES ('i', 'III'); INSERT INTO `user` (`login`, `name`) VALUES ('j', 'JJJ');
A pomocí PHP velkou tabulku náhodnými údaji:
for ($i = 0; $i < 1000000; $i++) mysql_query("INSERT INTO `tab` (`login`) VALUES ('".chr(rand(97,106))."')");
Nyní potřebuji provést následující dotaz:
SELECT SQL_CALC_FOUND_ROWS `tab`.`id`, `tab`.`login`, `user`.`name` FROM `tab` LEFT JOIN `user` ON `tab`.`login` = `user`.`login` ORDER BY `tab`.`id` DESC LIMIT 1; +---------+-------+------+ | id | login | name | +---------+-------+------+ | 1000000 | i | III | +---------+-------+------+ 1 row in set (2.58 sec)
Co mě vadí, je doba trvání dotazu. Pokud odstraním SQL_CALC_FOUND_ROWS
, dotaz se zrychlí:
SELECT `tab`.`id`, `tab`.`login`, `user`.`name` FROM `tab` LEFT JOIN `user` ON `tab`.`login` = `user`.`login` ORDER BY `tab`.`id` DESC LIMIT 1; +---------+-------+------+ | id | login | name | +---------+-------+------+ | 1000000 | i | III | +---------+-------+------+ 1 row in set (0.01 sec)
Nebo když odstraním LEFT JOIN
, dotaz se opět zrychlí:
SELECT SQL_CALC_FOUND_ROWS `tab`.`id`, `tab`.`login` FROM `tab` ORDER BY `tab`.`id` DESC LIMIT 1; +---------+-------+ | id | login | +---------+-------+ | 1000000 | i | +---------+-------+ 1 row in set (0.32 sec)
Kupodivu, když přidám WHERE
, tak se dotaz také zrychlí:
SELECT SQL_CALC_FOUND_ROWS `tab`.`id`, `tab`.`login`, `user`.`name` FROM `tab` LEFT JOIN `user` ON `tab`.`login` = `user`.`login` WHERE `tab`.`login`='a' ORDER BY `tab`.`id` DESC LIMIT 1; +--------+-------+------+ | id | login | name | +--------+-------+------+ | 999998 | a | AAA | +--------+-------+------+ 1 row in set (0.17 sec)
Jenže já bych potřeboval zrychlit ten první dotaz, ale nevím jak na to. Může mi někdo poradit, či vysvětlit proč dostávám tak rozdílné časy?
Ještě dodávám, že to testuji na openSUSE 11.1 a na MySQL 5 z distribuce.
SQL_CALC_FOUND_ROWS
server vykonává ten dotaz jako by tam nebyl ten LIMIT 1
, aby zjistil, kolik bude řádků (tudíž bez toho WHERE
to bude asi full-scan) a teprve pak to ořeže?
Nevyšlo by rychleji ptát se na počet řádků pomocí dalšího COUNT(*)
dotazu (to by měl stačit průchod přes index)?
BTW - indexy máte vytvořené?
SQL_CALC_FOUND_ROWS
je rychlejší, protože v tom druhém dotazu používáte LIMIT
– s ním databázi stačí, když najde první výsledek, a ten vám vrátí. Když ale musí spočítat SQL_CALC_FOUND_ROWS
, musí stejně dotaz provést celý, jako by tam LIMIT
nebyl.
Díky za náměty a rady. Všechny jsem je postupně vyzkoušel a navíc jsem ještě zkusil změnit engine na InnoDB. Změna enginu zrychlila dotaz více jak dvakrát. Provést dotaz bez SQL_CALC_FOUND_ROWS
a následně použít COUNT(*)
opět zrychlilo dotaz dvakrát. Pokud jsem tabulky spojil přes TINYINT
došlo je k malému zrychlení. Vítězem je tedy kombinace všech návrhů:
CREATE TABLE `tab` ( `id` INT NOT NULL AUTO_INCREMENT, `login` TINYINT NOT NULL, PRIMARY KEY (`id`), KEY `login` ( `login` ) ) ENGINE=InnoDB; CREATE TABLE `user` ( `login` TINYINT NOT NULL, `name` varchar(30) NOT NULL, PRIMARY KEY ( `login` ) ) ENGINE=InnoDB;
Naplnit daty
SELECT `tab`.`id`, `tab`.`login`, `user`.`name` FROM `tab` LEFT JOIN `user` ON `tab`.`login` = `user`.`login` ORDER BY `tab`.`id` DESC LIMIT 1; +---------+-------+------+ | id | login | name | +---------+-------+------+ | 1000000 | 5 | EEE | +---------+-------+------+ 1 row in set (0.00 sec) SELECT count(*) FROM `tab` LEFT JOIN `user` ON `tab`.`login` = `user`.`login` ORDER BY `tab`.`id` DESC; +----------+ | count(*) | +----------+ | 1000000 | +----------+ 1 row in set (0.49 sec)
Což je pětinásobné zrychlení. Nevýhodou je u enginu InnoDB delší vkládání dat a absence fulltexty. Všem díky.
SELECT count(*) FROM `tab` LEFT JOIN `user` ON `tab`.`login` = `user`.`login` ORDER BY `tab`.`id` DESC; +----------+ | count(*) | +----------+ | 1000000 | +----------+ 1 row in set (0.49 sec)Což je pětinásobné zrychlení. Nevýhodou je u enginu InnoDB delší vkládání dat a absence fulltexty. Všem díky.
A ešte sa Ti to urýchli asi miliónkrát, keď odtiaľ vyhodíš ten zbytočný LEFT JOIN a ORDER BY:
SELECT count(*) FROM `tab`; +----------+ | count(*) | +----------+ | 1000000 | +----------+ 1 row in set (0.00 sec)
Špatný nápad to není, on je dokonce skvělý. Celé je to ve třídě, která se stará o zobrazení jakéhokoli SQL dotazu v prohlížeči, ta třída se stará o stránkování. K tomu potřebuji znát i celkový počet řádků. Takže se ten SQL dotaz musí upravit programem. Zatím je postup následující:
přidám k SQL dotazu LIMIT
a provedu dotaz
odstraním vše mezi SELECT
a FROM
a dám tam COUNT(*)
A teď ještě vyhodit všechny LEFT JOIN
a ORDER BY
, ale nechat všechny WHERE
, GROUP
, HAVING
. Nepopletl jsem to?
Ak je ten SELECT vyrobený automaticky, tak to takto fungovať nebude... Teda pri tomto jednom by to fungovalo, ale nie je to univerzálne a ani to univerzálne byť nemôže.
Niečo podobné na zobrazovanie listingov používame aj my (komponent, ktorý robí najprv SELECT ... LIMIT OFFSET, a potom z toho odvodí ešte SELECT COUNT), a riešime to tak, že ten druhý SELECT na zistenie počtu riadkov sa tam dá nanútiť, ak automaticky vyrobený SELECT nie je optimálny, alebo nefunguje správne.
Tiskni
Sdílej: