Github publikoval Octoverse 2025 (YouTube), tj. každoroční přehled o stavu open source a veřejných softwarových projektů na GitHubu. Každou sekundu se připojil více než jeden nový vývojář. Nejpoužívanějším programovacím jazykem se stal TypeScript.
Kit je nový maskot webového prohlížeče Firefox.
Mastodon (Wikipedie) - sociální síť, která není na prodej - byl vydán ve verzi 4.5. Přehled novinek s náhledy v oznámení na blogu.
Německo zvažuje, že zaplatí místním telekomunikačním operátorům včetně Deutsche Telekom, aby nahradili zařízení od čínské firmy Huawei. Náklady na výměnu by mohly přesáhnout dvě miliardy eur (bezmála 49 miliard Kč). Jeden scénář počítá s tím, že vláda na tento záměr použije prostředky určené na obranu či infrastrukturu.
Po dvaceti letech skončil leader japonské SUMO (SUpport.MOzilla.org) komunity Marsf. Důvodem bylo nasazení sumobota, který nedodržuje nastavené postupy a hrubě zasahuje do překladů i archivů. Marsf zároveň zakázal použití svých příspěvků a dat k učení sumobota a AI a požádal o vyřazení svých dat ze všech učebních dat.
Úřad pro ochranu hospodářské soutěže zahajuje sektorové šetření v oblasti mobilních telekomunikačních služeb poskytovaných domácnostem v České republice. Z poznatků získaných na základě prvotní analýzy provedené ve spolupráci s Českým telekomunikačním úřadem (ČTÚ) ÚOHS zjistil, že vzájemné vztahy mezi operátory je zapotřebí detailněji prověřit kvůli možné nefunkčnosti některých aspektů konkurence na trzích, na nichž roste tržní podíl klíčových hráčů a naopak klesá význam nezávislých virtuálních operátorů.
Různé audity bezpečnostních systémů pařížského muzea Louvre odhalily závažné problémy v oblasti kybernetické bezpečnosti a tyto problémy přetrvávaly déle než deset let. Jeden z těchto auditů, který v roce 2014 provedla francouzská národní agentura pro kybernetickou bezpečnost, například ukázal, že heslo do kamerového systému muzea bylo „Louvre“. 😀
Z upstreamu GNOME Mutter byl zcela odstraněn backend X11. GNOME 50 tedy poběží už pouze nad Waylandem. Aplikace pro X11 budou využívat XWayland.
Byl publikován plán na odstranění XSLT z webových prohlížečů Chrome a Chromium. S odstraněním XSLT souhlasí také vývojáři Firefoxu a WebKit. Důvodem jsou bezpečnostní rizika a klesající využití v moderním webovém vývoji.
Desktopové prostředí LXQt (Lightweight Qt Desktop Environment, Wikipedie) vzniklé sloučením projektů Razor-qt a LXDE bylo vydáno ve verzi 2.3.0. Přehled novinek v poznámkách k vydání.
ISR(TIMER0_OVF_vect) {
TCNT0=6;
longac++;
if (longac>230) {
display_voltage();
longac=0;
}
if (engine_active) {
if (OCR1A <= motor_stop && E_llllNEW) {
E_llll = E_llllNEW;
E_llllNEW = 0;
}
if (E_a) {
if (! OCR1A) {
bitClear (PORTC, PC1);
bitSet (PORTC, PC0);
}
} else {
if (! OCR1A) {
bitClear (PORTC, PC0);
bitSet (PORTC, PC1);
}
}
if (OCR1A < E_llll) {
OCR1A++;
}
if (OCR1B < E_pppp) {
OCR1B++;
}
if (OCR1A > E_llll) {
OCR1A--;
}
if (OCR1B > E_pppp) {
OCR1B--;
}
}
if ((OCR1A+OCR1B)==0) engine_active=0;
}
ISR(USART_RXC_vect) {
unsigned char status,data,i;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | DATA_OVERRUN))==0) {
if((data=='\n')) { rs232enter=1; }
if(data>=32 && data<=126) {
i=RX_BUFFER_SIZE-1;
while(i>0) {
rx_buffer[i]=rx_buffer[i-1];
i--;
}
rx_buffer[0]=data;
}
}
}
voltage=analog2v(convertanalog(0));
write(PSTR("Akumulátor: "));
writestr(voltage2float(voltage));
void putchar1(char c) {
while (!(UCSRA & DATA_REGISTER_EMPTY));
UDR=c;
}
void write(char *sss){
char k;
while ((k=pgm_read_byte(sss++))) {
putchar1(k);
}
}
void writestr(char *sss){
char k;
while ((k=(*sss++))) {
putchar1(k);
}
}Funkce pro zjištění napětí jsem opráskl odtud: http://tuxgraphics.org/common/src2/article07061/
analog.c
/* vim: set sw=8 ts=8 si et: */
/*
* ADC functions for atmega8.
* Author: Guido Socher, Copyright: GPL
* http://tuxgraphics.org/electronics/
*/
#include <avr/io.h>
//----------------EDIT HERE----------------------------------------
// VDIV = (Rx+Ry)/Rx, change this according to the division factor of Rx and Ry
//
// This is if you do not use any resistor for Rx and Ry=4K7 (measure up to 2.5V):
//#define VDIV 1.0
//
// Ry=4K7 Rx=4K7 -> divide by 2 (measure up to 5V)
#define VDIV 7.745
// convert adc reading to voltage
unsigned int analog2v(unsigned int aval)
{
float r;
// 100* 2.56*VDIV/1024:
r=(aval * VDIV )/4.0;
return((unsigned int)(r+0.5));
}
//-------------END EDIT HERE----------------------------------------
// return analog value of a given channel. Works without interrupt
unsigned int convertanalog(unsigned char channel)
{
unsigned char adlow,adhigh;
/* enable analog to digital conversion in single run mode
* without noise canceler function. See datasheet of atmega88 page 250
* We set ADPS2=1 ADPS0=1 ADPS1=1 to have a clock division factor of 128.
* This is needed to stay in the recommended range of 50-200kHz
* Clock freq= 14MHz or 18 MHz
* ADEN: Analog Digital Converter Enable
* ADIE: ADC Interrupt Enable (0=no interrupt)
* ADIF: ADC Interrupt Flag
* ADCSR: ADC Control and Status Register
* ADPS2..ADPS0: ADC Prescaler Select Bits
* REFS: Reference Selection Bits (page 203)
*/
// int-ref with external capacitor at AREF pin:
// atmega8: 2.56V int ref=REFS1=1,REFS0=1
// atmega88: 1.1V int ref=REFS1=1,REFS0=1
// write only the lower 3 bit for channel selection
//
#ifdef USEAVCCREF
// AVcc ref
ADMUX=(1<<REFS0)|(channel & 0x0f);
#else
// Use the intenal ref:
ADMUX=(1<<REFS1)|(1<<REFS0)|(channel & 0x0f);
#endif
//
ADCSRA=(1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
// switch off digital input line:
//DIDR0=(1<<channel)& 0x1f;
// start conversion
ADCSRA|= (1<<ADSC);
while(bit_is_set(ADCSRA,ADSC)); // wait for result
adlow=ADCL; // read low first !!
adhigh=ADCH;
return((unsigned int)((adhigh<<8)|(adlow & 0xFF)));
}
analog.h
/* vim: set sw=8 ts=8 si et : */
/*
* Title : C include file for analog conversion
* Copyright: GPL V2
* Autor: Guido Socher
* http://tuxgraphics.org/electronics/
*/
#ifndef ANALOG_H
#define ANALOG_H
// return analog value of a given channel.
extern unsigned int convertanalog(unsigned char channel);
extern unsigned int analog2v(unsigned int aval);
#endif /* ANALOG_H */
voltage=analog2v(convertanalog(0));
write(PSTR("Akumulátor: "));
writestr(voltage2float(voltage));
Tohle je kód te funkce display_voltage(), kterou voláš v přerušení při přetečení časovače? Jestli jo, tak je problém jasný - při běhu obsluhy přerušení je zakázaná obsluha jiných přerušení, takže ISR(USART_RXC_vect)() se neprovede včas a UDR přeteče.
Je potřeba zbavit se kódu, který může běžet dlouho, a vykonává se se zakázaným přerušením. Možnosti:
1) Nevím, jak vypadá tvoje funkce main(), ale jestli je tam jenom nekonečná prázdná smyčka, tak můžeš definovat globální proměnnou, která bude do hlavní smyčky signalizovat, že se má provést měření, a odvysílat výsledky. Např.:
// globální proměnná je definovaná někde na začátku
volatile unsigned char signal_pro_mereni; //musí být volatile
void main () {
...
signal_pro_mereni = 0; // to přijde někam na začátek
...
...
while (1) {
if (signal_pro_mereni) { // do prázdné smyčky se přidá měření
signal_pro_mereni = 0;
display_voltage();
}
}
}
ISR(TIMER0_OVF_vect) {
TCNT0=6;
longac++;
if (longac>230) {
signal_pro_mereni = 1;
longac=0;
...
}
Rozdíl je v tom, že v tomto případě se měření provede s povoleným přerušením, takže když přijdou data ze sériového portu, tak se přijmou. (Samozřejmě musíš zajistit, aby přijetí dat a zpracování příkazů nezpůsobilo nějakou kolizi v odvysílání.)
2) Na čas nejnáročnější je samotné vysílání po sériovém portu, možná bude stačit ho spouštět v přerušení. Např.:
#define BUFFER_LEN 128
unsigned char outbuffer[BUFFER_LEN]; // buffer pro odesílání, velikost upravit podle potřeby
unsigned char out_len; // délka dat
unsigned char index; // odtud se bude vysílat
volatile unsigned char vysila_se;
void write (char *sss) {
unsigned char k;
if (vysila_se) return;
if (out_len == BUFFER_LEN) return;
while ((k = pgm_read_byte(sss++))) {
outbuffer[out_len++] = k;
if (out_len == BUFFER_LEN) break;
}
}
void writestr(char *sss){
char k;
if (vysila_se) return;
if (out_len == BUFFER_LEN) return;
while ((k=(*sss++))) {
outbuffer[out_len++] = k;
if (out_len == BUFFER_LEN) break;
}
}
void odvysilat() {
if (vysila_se) return;
if (!out_len) return;
if (out_len == 1) {
UDR = outbuffer[0];
out_len = 0;
return;
}
vysila_se = 1;
out_index = 0;
UDR = outbuffer[out_index++];
UCSRB |= (1 << UDRIE);
}
ISR (USART_UDRE_vect) {
UDR = outbuffer[out_index++];
if (out_index == out_len) {
UCSRB &= ~(1 << UDRIE);
vysila_se = 0;
out_len = 0;
}
}
Funkce write() a writestr() naplní vysílací buffer a zavolání odvysilat() ho odvysílá po sériovém portu. Program běží dál a jenom se občas přeruší, když je potřeba zapsat další znak do UDR.
(Tenhle konkrétní kód jsem netestoval, ale obvykle to dělám podobně a funguje mi to, takže princip je v podstatě v pořádku.)
3) V putchar() periodicky testovat UCSRA & (1 << RXC) a když se zjistí přijatý znak, tak zavolat nějakou funkci, která bude duplikovat kód obluhy přerušení USART_RXC_vect, ale to mi přijde dost ošklivé.
P.S.: Jestli ty tři řádky na začátku nejsou v display_voltage(), tak sem hoď ještě display_voltage().
while (1) {
if (je co dekódovat) { // předpokládám, že to tam je nějak takhle
dekódovat;
}
if (signal_pro_mereni) {
signal_pro_mereni = 0;
display_voltage();
}
}
Nevýhoda je, že vysílání ti zablokuje dekódování těch příkazů a ty se dokódují, až když se dovysílá. Pokud to nepůjde ani takhle, tak ti zbývá jenom možnost 2 nebo 3.
ISR(XXX_vect, ISR_NOBLOCK)
{
...
}
Tak bych nadefinoval TIMER0_OVF_vect, s tím, že při vstupu do přerušovací rutiny stopnu časovač TIMER0 a na konci rutiny ho zase spustím. Nevýhoda je v tom, že by měření neprobíhalo v periodických intervalech, intervaly mezi měřeními by se měnily podle toho kolik času by ATmega strávila vysíláním dat.
Tiskni
Sdílej: