Fedora zve na dvoudenní testování (2. a 3. prosince), během kterého si můžete vyzkoušet nové webové uživatelské rozhraní (WebUI) projektu FreeIPA. Pomozte vychytat veškeré chyby a vylepšit uživatelskou zkušenost ještě předtím, než se tato verze dostane k uživatelům Fedory a celého linuxového ekosystému.
Eben Upton oznámil zdražení počítačů Raspberry Pi, kvůli růstu cen pamětí, a představil 1GB verzi Raspberry Pi 5 za 45 dolarů.
Linus Torvalds na YouTube kanálu Linus Tech Tips staví dokonalý linuxový počítač.
Po 9 týdnech vývoje od vydání Linuxu 6.17 oznámil Linus Torvalds vydání Linuxu 6.18. Přehled novinek a vylepšení na LWN.net: první a druhá polovina začleňovacího okna a Linux Kernel Newbies. Vypíchnout lze například podporu protokolu PSP (PSP Security Protocol, PSP encryption of TCP connections).
Byla vydána nová stabilní verze 25.11 linuxové distribuce NixOS (Wikipedie). Její kódové označení je Xantusia. Podrobný přehled novinek v poznámkách k vydání. O balíčky se v NixOS stará správce balíčků Nix.
Richard Hughes na Mastodonu oznámil, že se společnost Framework Computer stala sponzorem služby LVFS (Linux Vendor Firmware Service) umožňující aktualizovat firmware zařízení na počítačích s Linuxem.
Jak na webu co nejšíleněji zadávat datum? Jak to uživatelům co nejvíce znepříjemnit? V Bad UX World Cup 2025 (YouTube) se vybíraly ty nejšílenější UX návrhy. Vítězným návrhem se stal Perfect Date.
Společnost Collabora vydala (YouTube) na LibreOffice založený desktopový kancelářský balík Collabora Office. Pro Windows, macOS a Linux. Se stejným uživatelským rozhraním jako Collabora Online. Svůj desktopový kancelářský balík s rozhraním LibreOffice pojmenovala Collabora Office Classic.
Glen MacArthur vydal AV Linux (AVL) a MX Moksha (MXM) 25. S linuxovým jádrem Liquorix. AV Linux (Wikipedie) je linuxová distribuce optimalizována pro tvůrce audio a video obsahu. Nejnovější AV Linux vychází z MX Linuxu 25 a Debianu 13 Trixie. AV Linux přichází s desktopovým prostředím Enlightenment 0.27.1 a MX Moksha s prostředím Moksha 0.4.1 (fork Enlightenmentu).
Ubuntu pro testování nových verzí vydává měsíční snapshoty. Dnes vyšel 1. snapshot Ubuntu 26.04 LTS (Resolute Raccoon).
ISR(TIMER0_OVF_vect) {
TCNT0=6;
longac++;
if (longac>230) {
display_voltage();
longac=0;
}
if (engine_active) {
if (OCR1A <= motor_stop && E_llllNEW) {
E_llll = E_llllNEW;
E_llllNEW = 0;
}
if (E_a) {
if (! OCR1A) {
bitClear (PORTC, PC1);
bitSet (PORTC, PC0);
}
} else {
if (! OCR1A) {
bitClear (PORTC, PC0);
bitSet (PORTC, PC1);
}
}
if (OCR1A < E_llll) {
OCR1A++;
}
if (OCR1B < E_pppp) {
OCR1B++;
}
if (OCR1A > E_llll) {
OCR1A--;
}
if (OCR1B > E_pppp) {
OCR1B--;
}
}
if ((OCR1A+OCR1B)==0) engine_active=0;
}
ISR(USART_RXC_vect) {
unsigned char status,data,i;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | DATA_OVERRUN))==0) {
if((data=='\n')) { rs232enter=1; }
if(data>=32 && data<=126) {
i=RX_BUFFER_SIZE-1;
while(i>0) {
rx_buffer[i]=rx_buffer[i-1];
i--;
}
rx_buffer[0]=data;
}
}
}
voltage=analog2v(convertanalog(0));
write(PSTR("Akumulátor: "));
writestr(voltage2float(voltage));
void putchar1(char c) {
while (!(UCSRA & DATA_REGISTER_EMPTY));
UDR=c;
}
void write(char *sss){
char k;
while ((k=pgm_read_byte(sss++))) {
putchar1(k);
}
}
void writestr(char *sss){
char k;
while ((k=(*sss++))) {
putchar1(k);
}
}Funkce pro zjištění napětí jsem opráskl odtud: http://tuxgraphics.org/common/src2/article07061/
analog.c
/* vim: set sw=8 ts=8 si et: */
/*
* ADC functions for atmega8.
* Author: Guido Socher, Copyright: GPL
* http://tuxgraphics.org/electronics/
*/
#include <avr/io.h>
//----------------EDIT HERE----------------------------------------
// VDIV = (Rx+Ry)/Rx, change this according to the division factor of Rx and Ry
//
// This is if you do not use any resistor for Rx and Ry=4K7 (measure up to 2.5V):
//#define VDIV 1.0
//
// Ry=4K7 Rx=4K7 -> divide by 2 (measure up to 5V)
#define VDIV 7.745
// convert adc reading to voltage
unsigned int analog2v(unsigned int aval)
{
float r;
// 100* 2.56*VDIV/1024:
r=(aval * VDIV )/4.0;
return((unsigned int)(r+0.5));
}
//-------------END EDIT HERE----------------------------------------
// return analog value of a given channel. Works without interrupt
unsigned int convertanalog(unsigned char channel)
{
unsigned char adlow,adhigh;
/* enable analog to digital conversion in single run mode
* without noise canceler function. See datasheet of atmega88 page 250
* We set ADPS2=1 ADPS0=1 ADPS1=1 to have a clock division factor of 128.
* This is needed to stay in the recommended range of 50-200kHz
* Clock freq= 14MHz or 18 MHz
* ADEN: Analog Digital Converter Enable
* ADIE: ADC Interrupt Enable (0=no interrupt)
* ADIF: ADC Interrupt Flag
* ADCSR: ADC Control and Status Register
* ADPS2..ADPS0: ADC Prescaler Select Bits
* REFS: Reference Selection Bits (page 203)
*/
// int-ref with external capacitor at AREF pin:
// atmega8: 2.56V int ref=REFS1=1,REFS0=1
// atmega88: 1.1V int ref=REFS1=1,REFS0=1
// write only the lower 3 bit for channel selection
//
#ifdef USEAVCCREF
// AVcc ref
ADMUX=(1<<REFS0)|(channel & 0x0f);
#else
// Use the intenal ref:
ADMUX=(1<<REFS1)|(1<<REFS0)|(channel & 0x0f);
#endif
//
ADCSRA=(1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
// switch off digital input line:
//DIDR0=(1<<channel)& 0x1f;
// start conversion
ADCSRA|= (1<<ADSC);
while(bit_is_set(ADCSRA,ADSC)); // wait for result
adlow=ADCL; // read low first !!
adhigh=ADCH;
return((unsigned int)((adhigh<<8)|(adlow & 0xFF)));
}
analog.h
/* vim: set sw=8 ts=8 si et : */
/*
* Title : C include file for analog conversion
* Copyright: GPL V2
* Autor: Guido Socher
* http://tuxgraphics.org/electronics/
*/
#ifndef ANALOG_H
#define ANALOG_H
// return analog value of a given channel.
extern unsigned int convertanalog(unsigned char channel);
extern unsigned int analog2v(unsigned int aval);
#endif /* ANALOG_H */
voltage=analog2v(convertanalog(0));
write(PSTR("Akumulátor: "));
writestr(voltage2float(voltage));
Tohle je kód te funkce display_voltage(), kterou voláš v přerušení při přetečení časovače? Jestli jo, tak je problém jasný - při běhu obsluhy přerušení je zakázaná obsluha jiných přerušení, takže ISR(USART_RXC_vect)() se neprovede včas a UDR přeteče.
Je potřeba zbavit se kódu, který může běžet dlouho, a vykonává se se zakázaným přerušením. Možnosti:
1) Nevím, jak vypadá tvoje funkce main(), ale jestli je tam jenom nekonečná prázdná smyčka, tak můžeš definovat globální proměnnou, která bude do hlavní smyčky signalizovat, že se má provést měření, a odvysílat výsledky. Např.:
// globální proměnná je definovaná někde na začátku
volatile unsigned char signal_pro_mereni; //musí být volatile
void main () {
...
signal_pro_mereni = 0; // to přijde někam na začátek
...
...
while (1) {
if (signal_pro_mereni) { // do prázdné smyčky se přidá měření
signal_pro_mereni = 0;
display_voltage();
}
}
}
ISR(TIMER0_OVF_vect) {
TCNT0=6;
longac++;
if (longac>230) {
signal_pro_mereni = 1;
longac=0;
...
}
Rozdíl je v tom, že v tomto případě se měření provede s povoleným přerušením, takže když přijdou data ze sériového portu, tak se přijmou. (Samozřejmě musíš zajistit, aby přijetí dat a zpracování příkazů nezpůsobilo nějakou kolizi v odvysílání.)
2) Na čas nejnáročnější je samotné vysílání po sériovém portu, možná bude stačit ho spouštět v přerušení. Např.:
#define BUFFER_LEN 128
unsigned char outbuffer[BUFFER_LEN]; // buffer pro odesílání, velikost upravit podle potřeby
unsigned char out_len; // délka dat
unsigned char index; // odtud se bude vysílat
volatile unsigned char vysila_se;
void write (char *sss) {
unsigned char k;
if (vysila_se) return;
if (out_len == BUFFER_LEN) return;
while ((k = pgm_read_byte(sss++))) {
outbuffer[out_len++] = k;
if (out_len == BUFFER_LEN) break;
}
}
void writestr(char *sss){
char k;
if (vysila_se) return;
if (out_len == BUFFER_LEN) return;
while ((k=(*sss++))) {
outbuffer[out_len++] = k;
if (out_len == BUFFER_LEN) break;
}
}
void odvysilat() {
if (vysila_se) return;
if (!out_len) return;
if (out_len == 1) {
UDR = outbuffer[0];
out_len = 0;
return;
}
vysila_se = 1;
out_index = 0;
UDR = outbuffer[out_index++];
UCSRB |= (1 << UDRIE);
}
ISR (USART_UDRE_vect) {
UDR = outbuffer[out_index++];
if (out_index == out_len) {
UCSRB &= ~(1 << UDRIE);
vysila_se = 0;
out_len = 0;
}
}
Funkce write() a writestr() naplní vysílací buffer a zavolání odvysilat() ho odvysílá po sériovém portu. Program běží dál a jenom se občas přeruší, když je potřeba zapsat další znak do UDR.
(Tenhle konkrétní kód jsem netestoval, ale obvykle to dělám podobně a funguje mi to, takže princip je v podstatě v pořádku.)
3) V putchar() periodicky testovat UCSRA & (1 << RXC) a když se zjistí přijatý znak, tak zavolat nějakou funkci, která bude duplikovat kód obluhy přerušení USART_RXC_vect, ale to mi přijde dost ošklivé.
P.S.: Jestli ty tři řádky na začátku nejsou v display_voltage(), tak sem hoď ještě display_voltage().
while (1) {
if (je co dekódovat) { // předpokládám, že to tam je nějak takhle
dekódovat;
}
if (signal_pro_mereni) {
signal_pro_mereni = 0;
display_voltage();
}
}
Nevýhoda je, že vysílání ti zablokuje dekódování těch příkazů a ty se dokódují, až když se dovysílá. Pokud to nepůjde ani takhle, tak ti zbývá jenom možnost 2 nebo 3.
ISR(XXX_vect, ISR_NOBLOCK)
{
...
}
Tak bych nadefinoval TIMER0_OVF_vect, s tím, že při vstupu do přerušovací rutiny stopnu časovač TIMER0 a na konci rutiny ho zase spustím. Nevýhoda je v tom, že by měření neprobíhalo v periodických intervalech, intervaly mezi měřeními by se měnily podle toho kolik času by ATmega strávila vysíláním dat.
Tiskni
Sdílej: