Evropská komise (EK) předběžně shledala čínskou sociální síť pro sdílení krátkých videí TikTok návykovým designem v rozporu s unijním nařízením o digitálních službách (DSA). Komise, která je exekutivním orgánem Evropské unie a má rozsáhlé pravomoci, o tom informovala v tiskovém sdělení. TikTok v reakci uvedl, že EK o platformě vykreslila podle něj zcela nepravdivý obraz, a proto se bude bránit.… více »
Offpunk byl vydán ve verzi 3.0. Jedná se o webový prohlížeč běžící v terminálu a podporující také protokoly Gemini, Gopher a RSS. Přibyl nástroj xkcdpunk pro zobrazení XKCD v terminálu.
Promethee je projekt, který implementuje UEFI (Unified Extensible Firmware Interface) bindingy pro JavaScript. Z bootovacího média načítá a spouští soubor 'script.js', který může používat UEFI služby. Cílem je vytvořit zavaděč, který lze přizpůsobit pomocí HTML/CSS/JS. Repozitář se zdrojovými kódy je na Codebergu.
Zpráva Justičního výboru Sněmovny reprezentantů upozorňuje na cenzurní kampaň Evropské komise, mířenou proti svobodě projevu na sociálních sítích. V dokumentu se uvádí, že se Evropská komise během posledních šesti let účastnila více než 100 uzavřených jednání, během nichž po platformách požadovala úpravy pravidel moderování obsahu, přičemž toto úsilí Komise zahrnovalo i cenzuru politických názorů a pravdivých informací. Výbor zdůrazňuje, že tento přístup Bruselu ohrožuje ústavou zaručená práva Američanů na svobodu projevu.
Linus Torvalds vydal jádro Linux 6.19. Podrobný výčet změn je ke zhlédnutí na stránce Kernel Newbies, stručné výběry v LWN (část první, druhá).
Do prodeje jde tichá bezdrátová herní myš Logitech PRO X2 SUPERSTRIKE s analogovými spínači s haptickou odezvou (HITS, Haptic Inductive Trigger System). Cena je 4 459 Kč.
Microsoft na GitHubu zveřejnil zdrojový kód projektu LiteBox, jedná se o 'knihovní operační systém' (library OS) zaměřený na bezpečnost, využívající systémovou architekturu LVBS k ochraně jádra před útoky z uživatelského prostoru. LiteBox je napsán v Rustu a uvolněný pod licencí MIT. Projekt je teprve v rané fázi vývoje.
BreezyBox je open-source shell a virtuální terminál pro populární jednočip ESP32. Nabízí základní unixové příkazy, sledování aktuálního pracovního adresáře (CWD), jednoduchý instalátor a spouštěč aplikací v podobě ELF binárních souborů, zabudovaný HTTP server nebo třeba ovládání WiFi - ukázka použití coby 'malého osobního počítače'. Ačkoliv je BreezyBox inspirovaný BusyBoxem, oproti němu má tento projekt několik externích závislostí, zejména na ESP-IDF SDK. BreezyBox je dostupný pod licencí MIT.
Byl představen cross-assembler xa.sh, napsaný čistě v Bourne shell skriptu. Tento nástroj umožňuje zpracovávat assemblerový kód pro Intel 8080, přičemž je možné snadno přidat podporu i pro další architektury, například 6502 a 6809. Skript využívá pouze různé běžné unixové příkazy jako jsou awk, sed nebo printf. Skript si lze stáhnout z GitHubového repozitáře projektu.
Byla představena nová verze modelu Claude Opus 4.6 od společnosti Anthropic. Jako demonstraci možností Anthropic využil 16 agentů Claude Opus 4.6 k vytvoření kompilátoru jazyka C, napsaného v programovacím jazyce Rust. Claude pracoval téměř autonomně, projekt trval zhruba dva týdny a náklady činily přibližně 20 000 dolarů. Výsledkem je fungující kompilátor o 100 000 řádcích kódu, jehož zdrojový kód je volně dostupný na GitHubu pod licencí Creative Commons.
ISR(TIMER0_OVF_vect) {
TCNT0=6;
longac++;
if (longac>230) {
display_voltage();
longac=0;
}
if (engine_active) {
if (OCR1A <= motor_stop && E_llllNEW) {
E_llll = E_llllNEW;
E_llllNEW = 0;
}
if (E_a) {
if (! OCR1A) {
bitClear (PORTC, PC1);
bitSet (PORTC, PC0);
}
} else {
if (! OCR1A) {
bitClear (PORTC, PC0);
bitSet (PORTC, PC1);
}
}
if (OCR1A < E_llll) {
OCR1A++;
}
if (OCR1B < E_pppp) {
OCR1B++;
}
if (OCR1A > E_llll) {
OCR1A--;
}
if (OCR1B > E_pppp) {
OCR1B--;
}
}
if ((OCR1A+OCR1B)==0) engine_active=0;
}
ISR(USART_RXC_vect) {
unsigned char status,data,i;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | DATA_OVERRUN))==0) {
if((data=='\n')) { rs232enter=1; }
if(data>=32 && data<=126) {
i=RX_BUFFER_SIZE-1;
while(i>0) {
rx_buffer[i]=rx_buffer[i-1];
i--;
}
rx_buffer[0]=data;
}
}
}
voltage=analog2v(convertanalog(0));
write(PSTR("Akumulátor: "));
writestr(voltage2float(voltage));
void putchar1(char c) {
while (!(UCSRA & DATA_REGISTER_EMPTY));
UDR=c;
}
void write(char *sss){
char k;
while ((k=pgm_read_byte(sss++))) {
putchar1(k);
}
}
void writestr(char *sss){
char k;
while ((k=(*sss++))) {
putchar1(k);
}
}Funkce pro zjištění napětí jsem opráskl odtud: http://tuxgraphics.org/common/src2/article07061/
analog.c
/* vim: set sw=8 ts=8 si et: */
/*
* ADC functions for atmega8.
* Author: Guido Socher, Copyright: GPL
* http://tuxgraphics.org/electronics/
*/
#include <avr/io.h>
//----------------EDIT HERE----------------------------------------
// VDIV = (Rx+Ry)/Rx, change this according to the division factor of Rx and Ry
//
// This is if you do not use any resistor for Rx and Ry=4K7 (measure up to 2.5V):
//#define VDIV 1.0
//
// Ry=4K7 Rx=4K7 -> divide by 2 (measure up to 5V)
#define VDIV 7.745
// convert adc reading to voltage
unsigned int analog2v(unsigned int aval)
{
float r;
// 100* 2.56*VDIV/1024:
r=(aval * VDIV )/4.0;
return((unsigned int)(r+0.5));
}
//-------------END EDIT HERE----------------------------------------
// return analog value of a given channel. Works without interrupt
unsigned int convertanalog(unsigned char channel)
{
unsigned char adlow,adhigh;
/* enable analog to digital conversion in single run mode
* without noise canceler function. See datasheet of atmega88 page 250
* We set ADPS2=1 ADPS0=1 ADPS1=1 to have a clock division factor of 128.
* This is needed to stay in the recommended range of 50-200kHz
* Clock freq= 14MHz or 18 MHz
* ADEN: Analog Digital Converter Enable
* ADIE: ADC Interrupt Enable (0=no interrupt)
* ADIF: ADC Interrupt Flag
* ADCSR: ADC Control and Status Register
* ADPS2..ADPS0: ADC Prescaler Select Bits
* REFS: Reference Selection Bits (page 203)
*/
// int-ref with external capacitor at AREF pin:
// atmega8: 2.56V int ref=REFS1=1,REFS0=1
// atmega88: 1.1V int ref=REFS1=1,REFS0=1
// write only the lower 3 bit for channel selection
//
#ifdef USEAVCCREF
// AVcc ref
ADMUX=(1<<REFS0)|(channel & 0x0f);
#else
// Use the intenal ref:
ADMUX=(1<<REFS1)|(1<<REFS0)|(channel & 0x0f);
#endif
//
ADCSRA=(1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
// switch off digital input line:
//DIDR0=(1<<channel)& 0x1f;
// start conversion
ADCSRA|= (1<<ADSC);
while(bit_is_set(ADCSRA,ADSC)); // wait for result
adlow=ADCL; // read low first !!
adhigh=ADCH;
return((unsigned int)((adhigh<<8)|(adlow & 0xFF)));
}
analog.h
/* vim: set sw=8 ts=8 si et : */
/*
* Title : C include file for analog conversion
* Copyright: GPL V2
* Autor: Guido Socher
* http://tuxgraphics.org/electronics/
*/
#ifndef ANALOG_H
#define ANALOG_H
// return analog value of a given channel.
extern unsigned int convertanalog(unsigned char channel);
extern unsigned int analog2v(unsigned int aval);
#endif /* ANALOG_H */
voltage=analog2v(convertanalog(0));
write(PSTR("Akumulátor: "));
writestr(voltage2float(voltage));
Tohle je kód te funkce display_voltage(), kterou voláš v přerušení při přetečení časovače? Jestli jo, tak je problém jasný - při běhu obsluhy přerušení je zakázaná obsluha jiných přerušení, takže ISR(USART_RXC_vect)() se neprovede včas a UDR přeteče.
Je potřeba zbavit se kódu, který může běžet dlouho, a vykonává se se zakázaným přerušením. Možnosti:
1) Nevím, jak vypadá tvoje funkce main(), ale jestli je tam jenom nekonečná prázdná smyčka, tak můžeš definovat globální proměnnou, která bude do hlavní smyčky signalizovat, že se má provést měření, a odvysílat výsledky. Např.:
// globální proměnná je definovaná někde na začátku
volatile unsigned char signal_pro_mereni; //musí být volatile
void main () {
...
signal_pro_mereni = 0; // to přijde někam na začátek
...
...
while (1) {
if (signal_pro_mereni) { // do prázdné smyčky se přidá měření
signal_pro_mereni = 0;
display_voltage();
}
}
}
ISR(TIMER0_OVF_vect) {
TCNT0=6;
longac++;
if (longac>230) {
signal_pro_mereni = 1;
longac=0;
...
}
Rozdíl je v tom, že v tomto případě se měření provede s povoleným přerušením, takže když přijdou data ze sériového portu, tak se přijmou. (Samozřejmě musíš zajistit, aby přijetí dat a zpracování příkazů nezpůsobilo nějakou kolizi v odvysílání.)
2) Na čas nejnáročnější je samotné vysílání po sériovém portu, možná bude stačit ho spouštět v přerušení. Např.:
#define BUFFER_LEN 128
unsigned char outbuffer[BUFFER_LEN]; // buffer pro odesílání, velikost upravit podle potřeby
unsigned char out_len; // délka dat
unsigned char index; // odtud se bude vysílat
volatile unsigned char vysila_se;
void write (char *sss) {
unsigned char k;
if (vysila_se) return;
if (out_len == BUFFER_LEN) return;
while ((k = pgm_read_byte(sss++))) {
outbuffer[out_len++] = k;
if (out_len == BUFFER_LEN) break;
}
}
void writestr(char *sss){
char k;
if (vysila_se) return;
if (out_len == BUFFER_LEN) return;
while ((k=(*sss++))) {
outbuffer[out_len++] = k;
if (out_len == BUFFER_LEN) break;
}
}
void odvysilat() {
if (vysila_se) return;
if (!out_len) return;
if (out_len == 1) {
UDR = outbuffer[0];
out_len = 0;
return;
}
vysila_se = 1;
out_index = 0;
UDR = outbuffer[out_index++];
UCSRB |= (1 << UDRIE);
}
ISR (USART_UDRE_vect) {
UDR = outbuffer[out_index++];
if (out_index == out_len) {
UCSRB &= ~(1 << UDRIE);
vysila_se = 0;
out_len = 0;
}
}
Funkce write() a writestr() naplní vysílací buffer a zavolání odvysilat() ho odvysílá po sériovém portu. Program běží dál a jenom se občas přeruší, když je potřeba zapsat další znak do UDR.
(Tenhle konkrétní kód jsem netestoval, ale obvykle to dělám podobně a funguje mi to, takže princip je v podstatě v pořádku.)
3) V putchar() periodicky testovat UCSRA & (1 << RXC) a když se zjistí přijatý znak, tak zavolat nějakou funkci, která bude duplikovat kód obluhy přerušení USART_RXC_vect, ale to mi přijde dost ošklivé.
P.S.: Jestli ty tři řádky na začátku nejsou v display_voltage(), tak sem hoď ještě display_voltage().
while (1) {
if (je co dekódovat) { // předpokládám, že to tam je nějak takhle
dekódovat;
}
if (signal_pro_mereni) {
signal_pro_mereni = 0;
display_voltage();
}
}
Nevýhoda je, že vysílání ti zablokuje dekódování těch příkazů a ty se dokódují, až když se dovysílá. Pokud to nepůjde ani takhle, tak ti zbývá jenom možnost 2 nebo 3.
ISR(XXX_vect, ISR_NOBLOCK)
{
...
}
Tak bych nadefinoval TIMER0_OVF_vect, s tím, že při vstupu do přerušovací rutiny stopnu časovač TIMER0 a na konci rutiny ho zase spustím. Nevýhoda je v tom, že by měření neprobíhalo v periodických intervalech, intervaly mezi měřeními by se měnily podle toho kolik času by ATmega strávila vysíláním dat.
Tiskni
Sdílej: