Google Chrome 144 byl prohlášen za stabilní. Nejnovější stabilní verze 144.0.7559.59 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 10 bezpečnostních chyb. Vylepšeny byly také nástroje pro vývojáře (YouTube).
Microsoft zveřejnil zdrojový kód XAML Studia a uvolnil ho pod MIT licencí. XAML Studio je nástroj ze světa Windows, určený pro tvorbu uživatelského rozhraní aplikací pomocí XAML (Extensible Application Markup Language). Stalo se tak zhruba po osmi letech od prvního prohlášení Microsoftu, že se tento kód chystá zveřejnit.
TimeCapsule, 'časová kapsle', je jazykový model trénovaný výhradně na datech z určitých míst a časových období, aby se tak napodobila autentická slovní zásoba, způsob vyjadřování a názory dané doby. Na Hugging face jsou k dispozici modely natrénované na historických textech dostupných v oblasti Londýna mezi lety 1800 až 1875.
Radicle byl vydán ve verzi 1.6.0 s kódovým jménem Amaryllis. Jedná se o distribuovanou alternativu k softwarům pro spolupráci jako např. GitLab.
Zemřel Scott Adams, tvůrce komiksových stripů Dilbert parodujících pracovní prostředí velké firmy.
Sdružení CZ.NIC vydalo novou verzi Knot Resolveru (6.1.0). Jedná se o první vydanou stabilní verzi 6, která je nyní oficiálně preferovanou a doporučovanou verzí, namísto předešlé verze 5. Více o Knot Resolveru 6 je možné se dočíst přímo v dokumentaci.
Byl vydán Linux Mint 22.3 s kódovým jménem Zena. Podrobnosti v přehledu novinek a poznámkách k vydání. Vypíchnout lze, že nástroj Systémová hlášení (System Reports) získal mnoho nových funkcí a byl přejmenován na Informace o systému (System Information). Linux Mint 22.3 bude podporován do roku 2029.
Wine bylo po roce vývoje od vydání verze 10.0 vydáno v nové stabilní verzi 11.0. Přehled novinek na GitLabu. Vypíchnuta je podpora NTSYNC a dokončení architektury WoW64.
Byl vydán Mozilla Firefox 147.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Firefox nově podporuje Freedesktop.org XDG Base Directory Specification. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 147 bude brzy k dispozici také na Flathubu a Snapcraftu.
Asociace repair.org udělila anticeny těm nejhorším produktům představeným na veletrhu CES 2026. Oceněnými jsou například šmírující kamery Amazon Ring AI, chytrý běžecký pás od společnosti Merach, která otevřeně přiznává, že nedokáže zabezpečit osobní data uživatelů, případně jednorázové lízátko, které rozvibrovává čelisti uživatele a tak přehrává hudbu. Absolutním vítězem je lednička od Samsungu, která zobrazuje reklamy a kterou lze otevřít pouze hlasovým příkazem přes cloudovou službu.
Mám aplikaci v avr pro atmega16. Zatím zkouším přesně měřit otáčky. Měřím způsobem, že počítám čas mezi pulsy a pak kolik je pulsů do sekundy. Problém je, že zřejmě pokud zrovna atmega přijímá nějaká data přes sériovou linku, tak asi nemůže běžet přerušení pro měření otáček, které běží Xkrát za sekundu. Proto jsou výsledné hodnoty např. 550 +-30. Co s tím? Jak nastavit, aby přerušení pro měření otáček mohlo přerušit cokoliv jiného a tudíš nedocházelo ke zpožděním?
Nebo i v té obsluze seriového portu nejdříve počítat otáčky.
Teď tam mám krystal 14.7456 MHz, což je nejrychlejší co tam mohu dát aby se to dobře dělilo.
Tak v ostatních přerušeních problém asi nebude. Vypnul jsem je totiž a povolil jen to, kde se měří otáčky a ještě je povolené přerušení od sériového portu, ale vyrubal jsem odtamtud všechen kód. Co mám tedy špatně? Měřím nějak špatně otáčky? Vím, že bych měl měřit přes několik pulsů, ale zkouším odchylku v tom jednom a ta je +- 5 cyklů, což ve výsledku dává docela velikou odchylku v rychlosti. Zde jsou povolená přerušení:
ISR(TIMER2_OVF_vect) {
TCNT2=255; // 14.7456MHz/1024/1=14400 preruseni/sec
longac++;
if (longac>=2880) {
longac=0;
longacDOit=1;
}
if (longac10<288001) longac10++;
if (longac10==288000) {
//longac10=0;
longac10DOit=1;
OCR1A=0;
}
if (longac10==1) {
OCR1A=300;
}
pulsecounterL++;
if (bit_is_set(PIND, 6) && ! speedLcounted1) {
pulseL++;
speedLcounted3 = 0;
speedLcounted1 = 1;
}
if (bit_is_set(PIND, 7) && ! speedLcounted2) {
pulseL++;
speedLcounted4 = 0;
speedLcounted2 = 1;
}
if (bit_is_clear(PIND, 6) && ! speedLcounted3) {
pulseL++;
speedLcounted1 = 0;
speedLcounted3 = 1;
}
if (bit_is_clear(PIND, 7) && ! speedLcounted4) {
pulseL++;
speedLcounted2 = 0;
speedLcounted4 = 1;
}
if (pulseL>=1 || pulsecounterL>=14400) {
//finalSpeedL = (pulseL*(14400000/pulsecounterL))/1000;
finalSpeedL=pulsecounterL; // pro ladeni, zobrazi jen kolik cyklu mezi 2 pulsy
pulsecounterL = 0;
pulseL = 0;
}
if (speedLcounted1 && speedLcounted2) {
if (!speedLdirTest) speedLdir = 1; else speedLdir = 0;
}
if (speedLcounted1 && ! speedLcounted2) {
speedLdirTest=0;
}
if (! speedLcounted1 && speedLcounted2) {
speedLdirTest=1;
}
}
// preruseni po prichodu noveho znaku na USART
// novy byte zapise do pozice 0, ostatni posune o 1 vyse = FIFO fornta
// po prichodu \n nastavi priznak enteru - je zpracovan v main()
ISR(USART_RXC_vect) {
unsigned char status,data,i;
}
Zkusim zvysit frekvenci odecitani. Mohlo by pomoct.
ISR(INT0_vect) {
pin1set = bit_is_set(PIND, 2);
pulseL++;
// zde kód pro určení směru
}
Analogicky pro ISR(INT1_vect), v přerušení od časovače by sis jenom přečetl to, kolik pulsů se za daný interval přečetlo. Samozřejmě je nutné mít proměnné deklarované jako volatile tam, kde je to potřeba.
Tiskni
Sdílej: