Byla vydána nová major verze 7.0 živé linuxové distribuce Tails (The Amnesic Incognito Live System), jež klade důraz na ochranu soukromí uživatelů a anonymitu. Nově je postavena je na Debianu 13 (Trixie) a GNOME 48 (Bengaluru). Další novinky v příslušném seznamu.
Společnost Meta na dvoudenní konferenci Meta Connect 2025 představuje své novinky. První den byly představeny nové AI brýle: Ray-Ban Meta (Gen 2), sportovní Oakley Meta Vanguard a především Meta Ray-Ban Display s integrovaným displejem a EMG náramkem pro ovládání.
Po půl roce vývoje od vydání verze 48 bylo vydáno GNOME 49 s kódovým názvem Brescia (Mastodon). S přehrávačem videí Showtime místo Totemu a prohlížečem dokumentů Papers místo Evince. Podrobný přehled novinek i s náhledy v poznámkách k vydání a v novinkách pro vývojáře.
Open source softwarový stack ROCm (Wikipedie) pro vývoj AI a HPC na GPU od AMD byl vydán ve verzi 7.0.0. Přidána byla podpora AMD Instinct MI355X a MI350X.
Byla vydána nová verze 258 správce systému a služeb systemd (GitHub).
Byla vydána Java 25 / JDK 25. Nových vlastností (JEP - JDK Enhancement Proposal) je 18. Jedná se o LTS verzi.
Věra Pohlová před 26 lety: „Tyhle aféry každého jenom otravují. Já bych všechny ty internety a počítače zakázala“. Jde o odpověď na anketní otázku deníku Metro vydaného 17. září 1999 na téma zneužití údajů o sporožirových účtech klientů České spořitelny.
Byla publikována Výroční zpráva Blender Foundation za rok 2024 (pdf).
Byl vydán Mozilla Firefox 143.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Nově se Firefox při ukončování anonymního režimu zeptá, zda chcete smazat stažené soubory. Dialog pro povolení přístupu ke kameře zobrazuje náhled. Obzvláště užitečné při přepínání mezi více kamerami. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 143 bude brzy k dispozici také na Flathubu a Snapcraftu.
Byla vydána betaverze Fedora Linuxu 43 (ChangeSet), tj. poslední zastávka před vydáním finální verze, která je naplánována na úterý 21. října.
Tak jsem ti něco malýho napsal, protože jsem se nudil. Koukni na to. Jinak by to měl bejt jednosměrnej algoritmus (neměla by se dát napsát funkce, která z čísla udělá string).
public static double getHash(String s, int lenght) { Double tmp = new Double(0); for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); int j = (int) c; tmp += j; } while (tmp < Math.pow(10, lenght - 1) || tmp > Math.pow(10, lenght)) { if (tmp >= Math.pow(10, lenght)) { //System.out.println("vetší než " + Math.pow(10, lenght)); double zbytek = tmp % 2; tmp = ((tmp / 2) + zbytek)- (zbytek / 2); } if (tmp < Math.pow(10, lenght-1)) { //System.out.println("menší než " + Math.pow(10, lenght-1)); tmp = tmp * 2; } } return tmp; }
No tohle je myslim tak trochu odstrasujici priklad, jak podobnou vec neimplementovat
Je to čístě nástřel. Zajímala by mne vaše implementace, když tahle je odstrašující.
Proc je napriklad promenna tmp Double a ne double?
S tim Double máte pravdu, to jsem tam nechal omylem (předtím jsem to tam měl úmyslně).
Proc ten hash neni celociselny?
Hash je celočíselný, ale typu double. Snad napsat return (int)tmp; a přepsat předpis metody dotazující zvládne.
Jenom teď ještě řeším,že pro podobné stringy to hází dost podobné hashe. Ještě pošlu druhou verzi, kde bude tohle ošetřeno.
public static int getHash(String s, int lenght) { int usedLenght = lenght + 1; double tmp = 0; for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); int j = (int) c; tmp += j; } tmp = Math.abs(Integer.reverse((int)tmp)); while (tmp < Math.pow(10, usedLenght - 1) || tmp > Math.pow(10, usedLenght)) { if (tmp >= Math.pow(10, usedLenght)) { int zbytek = (int)(tmp % 2); tmp = ((tmp / 2) + zbytek) - (zbytek / 2); } if (tmp < Math.pow(10, usedLenght - 1)) { tmp = tmp * 2; } } return (int) (tmp / 10.0); }
Proc vymyslet kolo.
Na 100% souhlasim. Já tu metodu vymýšlim čístě ze zvědavosti.
prehozeni pismen vedlo na ruzny haskod, coz trivialni scitani znaku nesplnuje
Po malé úpravě (viz. příloha) splňuje. Ale trochu se stydím, že mě to nenapdalo hned (a hlavně samo od sebe).
Realizovat celociselne operace v typech s plovouci carkou samozrejme ciste technicky lze (dokud nejsou cisla moc velka), ja to ale povazuji za spatny programatorsky postup, protoze to neni logicke.
Javu se teprve učím. Normálně programuji v jazycích kde se datové typy moc neřeší (hlavně PHP). Upravil jsem metodu, aby celou dobu pracovala s celočíselnými datovým typem. Takhle vám to příjde logicky správné už ?
podivej se treba, jak se pocita hashcode pro tridu String, zdrojaky jsou napriklad pro Sun implementaci k dispozici
Kouknul jsem, implementoval jsem sám ze zvědavosti. Má to však pro zadání (pevná délka a asi by autor chtěl pouze kladná čísla) nějáké mouchy.
Jinak děkuji za poznámky. Rád se něco přiučím.
Jen pro srovnání, jsem změřil NetBeans profilerem rychlosti všech tří hashů (můj originální - getHash, moje implementace hashCode - hashCode a originální hashCode - origHashCode). Výsledky jsem přiložil jako obrázek.
public static long getHash(String s, int lenght) { int usedLenght = lenght + 1; long tmp = 0; for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); int j = (int) c; tmp += (j*(i+1)); } tmp = Math.abs(Integer.reverse((int)tmp)); while (tmp < Math.pow(10, usedLenght - 1) || tmp > Math.pow(10, usedLenght)) { if (tmp >= Math.pow(10, usedLenght)) { int zbytek = (int)(tmp % 2); tmp = ((tmp / 2) + zbytek) - (zbytek / 2); } if (tmp < Math.pow(10, usedLenght - 1)) { tmp = tmp * 2; } } return (tmp / 10); }
public static int hashCode(String s) { int hash = 0; for(int i =0; i < s.length(); i++) { hash = hash + s.charAt(i) * (int)Math.pow(31, s.length() - (i + 1)); } return hash; }
tmp = ((tmp / 2) + zbytek) - (zbytek / 2);
Máte uplnou pravdu, je to zbytečné. Teď to opravdu postrádá smysl. Kód jsem opravil. V podstatě jsem došel sám ke stejnému výpočtu, jako je originální javovský String.hashCode. Rozdíl je skoro jen v tom, že já používám:
hash += s.charAt(i)*(i+1);
a originál Sun metoda hashCode:
hash += s.charAt(i) * (int)Math.pow(31, lenght - (i + 1));
Long.reverse()
nechápu vůbec. Váš algoritmus se od algoritmu použitého v Javě dost podstatně liší – ovšem je pravda, že ty algoritmy jsou co do míry hashování srovnatelné. Myslím, že pro oba dva nebude problém napsat inverzní funkci (která vrátí některý z možných vstupů), implementace String.hashCode()
ve skutečnosti hashuje jenom podle pravých 7 znaků, další znaky se k hashi prakticky jen přičtou (takže u ASCII textu se osmý a další znak zprava promítnou jen do dolních 7 bitů hashe).
Pokud to celé má sloužit jako bezpečnostní kód, použil bych nějakou prověřenou hashovací funkci (SHA nebo klidně i MD5), výsledek bych rozdělil na skupiny bitů požadované délky a z těch bych XORováním udělal jednu skupinu požadované délky.
Tiskni
Sdílej: