Zero Day Initiative zveřejnila informace o 6 bezpečnostních chybách (1, 2, 3, 4, 5, 6) v MTA Exim. Nejvážnější z nich CVE-2023-42115 má CVSS 9.8. Na opravě chyb se pracuje.
Knihovna libvpx byla vydána ve verzi 1.13.1. Řešena je kritická bezpečnostní chyba CVE-2023-5217 (heap buffer overflow in vp8 encoding). Chyba je již opravena také v Chrome / Chromium 117.0.5938.132 a Firefoxu 118.0.1.
Balíček kmod s nástroji pro práci s linuxovými moduly byl vydán ve verzi 31. Nově umí modprobe zavést modul nacházející se v libovolném adresáři (# modprobe ./drivers/gpu/drm/i915/i915.ko).
Adventura Trüberbrook je na portále GOG.com zdarma, akce trvá do 2. října.
Sound Open Firmware, projekt Linux Foundation, open source audio DSP firmware a SDK, byl vydán ve verzi 2.7.0. Z novinek lze vypíchnout podporu platformy AMD Van Gogh.
Richard Stallman v den oslav 40. výročí GNU oznámil, že má rakovinu (YouTube).
DIY trackball Ploopy má novou variantu Adept, na rozdíl od předchozích používá 44mm kouli, má symetrický tvar a šest tlačítek, snímač zůstává PMW-3360, novinkou je použití Raspberry Pi Pico, na kterém běží firmware QMK s podporou grafické konfigurační aplikace VIA. Předobjednávky jsou otevřeny za ceny 80-105 CAD.
Probíhá Meta Connect 2023. Společnost Meta představuje své novinky v oblasti AI a virtuální, smíšené a rozšířené reality. Představeny byly nové chytré brýle Ray-Ban | Meta a headset Meta Quest 3.
Eben Upton oficiálně představil (YouTube) nové Raspberry Pi 5 (YouTube). Je více než 2x výkonnější než jeho předchůdce, model 4B.
Byl vydán (YouTube) Counter-Strike 2. Nativně také pro Linux. Jedná se o největší technologický skok v historii této populární herní série.
Tak jsem ti něco malýho napsal, protože jsem se nudil. Koukni na to. Jinak by to měl bejt jednosměrnej algoritmus (neměla by se dát napsát funkce, která z čísla udělá string).
public static double getHash(String s, int lenght) { Double tmp = new Double(0); for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); int j = (int) c; tmp += j; } while (tmp < Math.pow(10, lenght - 1) || tmp > Math.pow(10, lenght)) { if (tmp >= Math.pow(10, lenght)) { //System.out.println("vetší než " + Math.pow(10, lenght)); double zbytek = tmp % 2; tmp = ((tmp / 2) + zbytek)- (zbytek / 2); } if (tmp < Math.pow(10, lenght-1)) { //System.out.println("menší než " + Math.pow(10, lenght-1)); tmp = tmp * 2; } } return tmp; }
No tohle je myslim tak trochu odstrasujici priklad, jak podobnou vec neimplementovat
Je to čístě nástřel. Zajímala by mne vaše implementace, když tahle je odstrašující.
Proc je napriklad promenna tmp Double a ne double?
S tim Double máte pravdu, to jsem tam nechal omylem (předtím jsem to tam měl úmyslně).
Proc ten hash neni celociselny?
Hash je celočíselný, ale typu double. Snad napsat return (int)tmp; a přepsat předpis metody dotazující zvládne.
Jenom teď ještě řeším,že pro podobné stringy to hází dost podobné hashe. Ještě pošlu druhou verzi, kde bude tohle ošetřeno.
public static int getHash(String s, int lenght) { int usedLenght = lenght + 1; double tmp = 0; for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); int j = (int) c; tmp += j; } tmp = Math.abs(Integer.reverse((int)tmp)); while (tmp < Math.pow(10, usedLenght - 1) || tmp > Math.pow(10, usedLenght)) { if (tmp >= Math.pow(10, usedLenght)) { int zbytek = (int)(tmp % 2); tmp = ((tmp / 2) + zbytek) - (zbytek / 2); } if (tmp < Math.pow(10, usedLenght - 1)) { tmp = tmp * 2; } } return (int) (tmp / 10.0); }
Proc vymyslet kolo.
Na 100% souhlasim. Já tu metodu vymýšlim čístě ze zvědavosti.
prehozeni pismen vedlo na ruzny haskod, coz trivialni scitani znaku nesplnuje
Po malé úpravě (viz. příloha) splňuje. Ale trochu se stydím, že mě to nenapdalo hned (a hlavně samo od sebe).
Realizovat celociselne operace v typech s plovouci carkou samozrejme ciste technicky lze (dokud nejsou cisla moc velka), ja to ale povazuji za spatny programatorsky postup, protoze to neni logicke.
Javu se teprve učím. Normálně programuji v jazycích kde se datové typy moc neřeší (hlavně PHP). Upravil jsem metodu, aby celou dobu pracovala s celočíselnými datovým typem. Takhle vám to příjde logicky správné už ?
podivej se treba, jak se pocita hashcode pro tridu String, zdrojaky jsou napriklad pro Sun implementaci k dispozici
Kouknul jsem, implementoval jsem sám ze zvědavosti. Má to však pro zadání (pevná délka a asi by autor chtěl pouze kladná čísla) nějáké mouchy.
Jinak děkuji za poznámky. Rád se něco přiučím.
Jen pro srovnání, jsem změřil NetBeans profilerem rychlosti všech tří hashů (můj originální - getHash, moje implementace hashCode - hashCode a originální hashCode - origHashCode). Výsledky jsem přiložil jako obrázek.
public static long getHash(String s, int lenght) { int usedLenght = lenght + 1; long tmp = 0; for (int i = 0; i < s.length(); ++i) { char c = s.charAt(i); int j = (int) c; tmp += (j*(i+1)); } tmp = Math.abs(Integer.reverse((int)tmp)); while (tmp < Math.pow(10, usedLenght - 1) || tmp > Math.pow(10, usedLenght)) { if (tmp >= Math.pow(10, usedLenght)) { int zbytek = (int)(tmp % 2); tmp = ((tmp / 2) + zbytek) - (zbytek / 2); } if (tmp < Math.pow(10, usedLenght - 1)) { tmp = tmp * 2; } } return (tmp / 10); }
public static int hashCode(String s) { int hash = 0; for(int i =0; i < s.length(); i++) { hash = hash + s.charAt(i) * (int)Math.pow(31, s.length() - (i + 1)); } return hash; }
tmp = ((tmp / 2) + zbytek) - (zbytek / 2);
Máte uplnou pravdu, je to zbytečné. Teď to opravdu postrádá smysl. Kód jsem opravil. V podstatě jsem došel sám ke stejnému výpočtu, jako je originální javovský String.hashCode. Rozdíl je skoro jen v tom, že já používám:
hash += s.charAt(i)*(i+1);
a originál Sun metoda hashCode:
hash += s.charAt(i) * (int)Math.pow(31, lenght - (i + 1));
Long.reverse()
nechápu vůbec. Váš algoritmus se od algoritmu použitého v Javě dost podstatně liší – ovšem je pravda, že ty algoritmy jsou co do míry hashování srovnatelné. Myslím, že pro oba dva nebude problém napsat inverzní funkci (která vrátí některý z možných vstupů), implementace String.hashCode()
ve skutečnosti hashuje jenom podle pravých 7 znaků, další znaky se k hashi prakticky jen přičtou (takže u ASCII textu se osmý a další znak zprava promítnou jen do dolních 7 bitů hashe).
Pokud to celé má sloužit jako bezpečnostní kód, použil bych nějakou prověřenou hashovací funkci (SHA nebo klidně i MD5), výsledek bych rozdělil na skupiny bitů požadované délky a z těch bych XORováním udělal jednu skupinu požadované délky.
Tiskni
Sdílej: