Byla vydána (𝕏) nová verze 26.1 open source firewallové a routovací platformy OPNsense (Wikipedie). Jedná se o fork pfSense postavený na FreeBSD. Kódový název OPNsense 26.1 je Witty Woodpecker. Přehled novinek v příspěvku na fóru.
Deník TO spustil vlastní zpravodajský webový portál ToHledej.CZ s internetovým vyhledávačem a bezplatnou e-mailovou schránkou. Dle svého tvrzení nabízí 'Zprávy, komentáře, analýzy bez cenzury' a 'Mail bez šmírování a Velkého bratra'. Rozložením a vizuálním stylem se stránky nápadně podobají portálu Seznam.cz a nejspíše je cílem být jeho alternativou. Z podmínek platformy vyplývá, že portál využívá nespecifikovaný internetový vyhledávač třetí strany.
Computer History Museum (Muzeum historie počítačů) zpřístupnilo své sbírky veřejnosti formou online katalogu. Virtuálně si tak můžeme prohlédnout 'rozsáhlou sbírku archivních materiálů, předmětů a historek a seznámit se s vizionáři, inovacemi a neznámými příběhy, které revolučním způsobem změnily náš digitální svět'.
Ruský hacker VIK-on si sestavil vlastní 32GB DDR5 RAM modul z čipů získaných z notebookových 16GB SO-DIMM RAM pamětí. Modul běží na 6400 MT/s a celkové náklady byly přibližně 218 dolarů, což je zhruba třetina současné tržní ceny modulů srovnatelných parametrů.
Národní identitní autorita (NIA), která ovlivňuje přihlašování prostřednictvím NIA ID, MEP, eOP a externích identit (např. BankID), je částečně nedostupná.
Byla vydána nová verze 1.16.0 klienta a serveru VNC (Virtual Network Computing) s názvem TigerVNC (Wikipedie). Z novinek lze vypíchnout nový server w0vncserver pro sdílení Wayland desktopu. Zdrojové kódy jsou k dispozici na GitHubu. Binárky na SourceForge. TigerVNC je fork TightVNC.
Byla vydána nová verze 4.6 (𝕏, Bluesky, Mastodon) multiplatformního open source herního enginu Godot (Wikipedie, GitHub). Přehled novinek i s náhledy v příspěvku na blogu.
Rozsáhlá modernizace hardwarové infrastruktury Základních registrů měla zabránit výpadkům digitálních služeb státu. Dnešnímu výpadku nezabránila.
Čínský startup Kimi představil open-source model umělé inteligence Kimi K2.5. Nová verze pracuje s textem i obrázky a poskytuje 'paradigma samosměřovaného roje agentů' pro rychlejší vykonávání úkolů. Kimi zdůrazňuje vylepšenou schopnost modelu vytvářet zdrojové kódy přímo z přirozeného jazyka. Natrénovaný model je dostupný na Hugging Face, trénovací skripty však ne. Model má 1 T (bilion) parametrů, 32 B (miliard) aktivních.
V Raspberry Pi OS lze nově snadno povolit USB Gadget Mode a díky balíčku rpi-usb-gadget (CDC-ECM/RNDIS) mít možnost se k Raspberry Pi připojovat přes USB kabel bez nutnosti konfigurování Wi-Fi nebo Ethernetu. K podporovaným Raspberry Pi připojeným do USB portu podporujícího OTG.
uint8_t search_sensors(void) {
uint8_t i;
uint8_t id[OW_ROMCODE_SIZE];
uint8_t diff;
bool akva1, akva2, lednice, mistnost;
while(1) {
//writestr("+4 NACITAM SENZORY");
//lfcr();
m_delay_ms(250);
nSensors = 0;
akva1_id = -1;
akva2_id = -1;
lednice_id = -1;
mistnost_id = -1;
for(uint8_t iN = 0; iN<MAXSENSORS; iN++) { // nemá vliv na chování
for(uint8_t iN2 = 0; iN2<OW_ROMCODE_SIZE; iN2++) {
gSensorIDs[iN][iN2] = 0;
}
}
for(diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE && nSensors < MAXSENSORS; ) {
DS18X20_find_sensor( &diff, &id[0] );
if( diff == OW_PRESENCE_ERR ) break;
if( diff == OW_DATA_ERR ) break;
akva1 = true;
akva2 = true;
lednice = true;
mistnost = true;
for (i=0;i<OW_ROMCODE_SIZE;i++) {
gSensorIDs[nSensors][i]=id[i];
if(akva1) {
eeprom_busy_wait();
if( gSensorIDs[nSensors][i] != eeprom_read_byte((uint8_t*)(EEPROM_AKVA1_SENSOR+i)) ) akva1 = false;
}
if(akva2) {
eeprom_busy_wait();
if( gSensorIDs[nSensors][i] != eeprom_read_byte((uint8_t*)(EEPROM_AKVA2_SENSOR+i)) ) akva2 = false;
}
if(lednice) {
eeprom_busy_wait();
if( gSensorIDs[nSensors][i] != eeprom_read_byte((uint8_t*)(EEPROM_LEDNICE_SENSOR+i)) ) lednice = false;
}
if(mistnost) {
eeprom_busy_wait();
if( gSensorIDs[nSensors][i] != eeprom_read_byte((uint8_t*)(EEPROM_MISTNOST_SENSOR+i)) ) mistnost = false;
}
}
if(akva1 && !akva2 && !lednice && !mistnost) {
akva1_id = nSensors;
leds_add(port_led_akva1);
}
if(!akva1 && akva2 && !lednice && !mistnost) {
akva2_id = nSensors;
leds_add(port_led_akva2);
}
if(!akva1 && !akva2 && lednice && !mistnost) {
lednice_id = nSensors;
leds_add(port_led_lednice);
}
if(!akva1 && !akva2 && !lednice && mistnost) {
mistnost_id = nSensors;
}
nSensors++;
}
if( nSensors ) return nSensors;
leds_search();
leds_blink(LED_BLINK_FAST_INTERVAL);
m_delay_s(1);
}
}
void vypsat_senzory() {
nSensors = search_sensors();
for ( int i=0; i<nSensors; i++ ) {
writestr("#");
writestr_integer((int) i);
if(i == akva1_id)
writestr(":AKVA1:");
if(i == akva2_id)
writestr(":AKVA2:");
if(i == lednice_id)
writestr(":LEDNICE:");
if(i == mistnost_id)
writestr(":MISTNOST:");
writestr(" ");
writetemp(getTemp(i));
lfcr();
}
}
void uloz_senzor( uint8_t *id, uint8_t kam ) {
for (int i=0; i<OW_ROMCODE_SIZE; i++) {
eeprom_busy_wait();
eeprom_write_byte((uint8_t*)(kam+i),id[i]);
}
}
void nastav_senzor(char cilselekt) {
uint8_t sensT = (uint8_t)(rx_buffer[0]-48);
writestr_integer((int) sensT); lfcr();
if ( sensT < nSensors ) {
if(cilselekt == '1')
uloz_senzor(&gSensorIDs[sensT][0], EEPROM_AKVA1_SENSOR);
else if(cilselekt == '2')
uloz_senzor(&gSensorIDs[sensT][0], EEPROM_AKVA2_SENSOR);
else if(cilselekt == 'l')
uloz_senzor(&gSensorIDs[sensT][0], EEPROM_LEDNICE_SENSOR);
else if(cilselekt == 'm')
uloz_senzor(&gSensorIDs[sensT][0], EEPROM_MISTNOST_SENSOR);
else errorWrite(1);
writestr("+1 OK");
lfcr();
nSensors = search_sensors();
vypsat_senzory();
}
else
errorWrite(1);
}
void eeprog_vstup_podprogram() {
if(citac_ee > 0) {
for (uint8_t i=RX_BUFFER_SIZE; i>0; i--) rx_buffer[i]=0;
rs232enter=0;
rs232ready=true;
while(1) {
if(rs232enter) {
rs232ready=false;
if(cmdtest('L','S',0))
vypsat_senzory();
else if(cmdtest('S','A',1))
nastav_senzor('1');
else if(cmdtest('S','B',1))
nastav_senzor('2');
else if(cmdtest('S','L',1))
nastav_senzor('l');
else if(cmdtest('S','M',1))
nastav_senzor('m');
else if(cmdtest('E','Q',0)) {
writestr("+1 OK"); lfcr();
break;
}
else
errorWrite(3);
for (uint8_t i=RX_BUFFER_SIZE; i>0; i--) rx_buffer[i]=0;
rs232enter=0;
rs232ready=true;
}
}
}
else
errorWrite(4);
}
Samotné search_sensors(void) funguje dobře, opravdu porovnává všechny bajty identifikace senzoru vs. uložená identifikace v eeprom. Problém nastává, pokud chci uložit nový senzor. Všechny se ukládají dobře, kromě 1.(senzor #0). Pokud se jednoduše snažím uložit senzor 0 jako cokoliv, tak je první bajt vždy 0x00. Takhle vypadá část eepromky: 00FBFA97020000A728D6F797020000B72820BA9702000072. Správně ale má být 28FBFA97020000A728D6F797020000B72820BA9702000072. Co mám špatně?
Řešení dotazu:
Tiskni
Sdílej: