Byla vydána verze 3.6 multiplatformního integrovaného vývojového prostředí (IDE) pro rychlý vývoj aplikaci (RAD) ve Free Pascalu Lazarus (Wikipedie). Přehled novinek v poznámkách k vydání. Využíván je Free Pascal Compiler (FPC) 3.2.2.
Na čem aktuálně pracují vývojáři GNOME a KDE? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE.
Byla vydána nová verze 8.8 multiplatformní digitální pracovní stanice pro práci s audiem (DAW) Ardour. Přehled oprav, vylepšení a novinek v oficiálním oznámení.
Byla vydána nová major verze 11.0.0 nástroje mitmproxy určeného pro vytváření interaktivních MITM proxy pro HTTP a HTTPS komunikaci. Přehled novinek v příspěvku na blogu. Vypíchnuta je plná podpora HTTP/3 a vylepšená podpora DNS.
Richard Hughes na svém blogu představil nejnovější major verzi 2.0.0 nástroje fwupd umožňujícího aktualizovat firmware zařízení na počítačích s Linuxem. Podrobný přehled novinek v poznámkách k vydání. Přehled podporovaných zařízení, nejnovějších firmwarů a zapojených výrobců na stránkách LVFS (Linux Vendor Firmware Service).
Počítačová hra Kvark (Steam) od studia Perun Creative dospěla do verze 1.0 (𝕏). Běží také na Linuxu.
Byla vydána (𝕏) zářijová aktualizace aneb nová verze 1.94 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a animovanými gify v poznámkách k vydání. Ve verzi 1.94 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
O víkendu 5. a 6. října se koná ne-konference jOpenSpace. Pokud si chcete kouzlo živých přednášek vychutnat společně s námi, sledujte live streamy: sobota a neděle. Začínáme lehce po 9 hodině ranní. Zpracované záznamy jsou obvykle k dispozici do 14 dní na našem YouTube kanále.
Hodiny s unixovým časem dnes odbily 20 000 dnů. Unixový čas je počet sekund uplynulých od půlnoci 1. ledna 1970. Dnes ve 02:00 to bylo 1 728 000 000 sekund, tj. 20 000 dnů.
Notebook NitroPad V56 od společnosti Nitrokey byl oficiálně certifikován pro Qubes OS verze 4. Qubes OS (Wikipedie) je svobodný a otevřený operační systém zaměřený na bezpečnost desktopu.
int i; double x, dx; double y, dy; double C; // nějaké startovní podmínky x = 5; y = 7; C = 4.55; // dx/dy je lineární. dx = 0.1; dy = 0.05; for (i = 0; i < 1000; i++) { double d = x * y * C; printf("%f\n", d); x += dx; y += dy; }Můj problém je, že bych v tom cyklu chtěl jen sčítat, takto bych si to představoval:
int i; double x, dx; double y, dy; double C; // nějaké startovní podmínky x = 5; y = 7; C = 4.55; // dx/dy je lineární. dx = 0.1; dy = 0.05; // výpočet d a delty, popřípadě delta-delta? double d = x * y * C; double delta = ??? for (i = 0; i < 1000; i++) { printf("%f\n", d); d += delta; }Pro výpočet delty jsem zkusil více možností, jsem si celkem jistý, že tam musí být y*dx*C + x*dy*C, ale něco mi tam chybí. Takže, je tu nějaký zkušený matematik, co by věděl:_) ?
import math def f(x, y, C): return x * y * C x = 1.5 y = 1.9 C = 1.4 dx = 1.5 dy = 1.1 d = f(x, y, C) d_d = x * dy * C + y * dx * C + dx * dy * C d_d_d = dx * C + dy * C for i in xrange(0, 10): a = f(x, y, C) d if abs(a - d) > 0.001: print "a=%f b=%f (FAILED)" % (a, d) else: print "a=%f b=%f (OK)" % (a, d) d += d_d d_d += d_d_d x += dx y += dy
d = x * dy * C + y * dx * C + dx * dy * C d_d = 2 * C * dx * dyTakže uzavřít
import math def f(x, y, C): return x * y * C x = 1.5 y = 1.9 C = 1.4 dx = 1.9 dy = 1.5 d = f(x, y, C) d_d = x * dy * C + y * dx * C + dx * dy * C # První d_d_d = 2 * C * dx * dy # Druhá for i in xrange(0, 10): a = f(x, y, C) if abs(a - d) > 0.001: print "a=%f b=%f (FAILED)" % (a, d) else: print "a=%f b=%f (OK)" % (a, d) d += d_d d_d += d_d_d x += dx y += dy
Šlo o to, abych spočítal průběh té funkce, aniž bych musel dosazovat do f()No dobře, to je popis toho, co děláš. Ale tím, že to popíšeš, to nezačne dávat smysl. Proč nechceš počítat hodnotu funkce, když ji spočítat dovedeš? Je to skoro vždy mnohem jednodušší než numerická integrace -- v tvém případě je to zcela evidentně jednodušší. Jediná důležitá praktická výjimka, kterou znám, je obecný Bresenhamův algoritmus pro rasterizaci algebraických křivek, ale tam je to právě tou diskretizací do rastru. A že to s tou druhou derivací provádí něco smysluplného je zde dáno čistě tím, že Taylorův rozvoj té funkce končí u druhého řádu. Takže ve skutečnosti počítáš přímo zase hodnotu té funkce, akorát ten polynom máš hrozně složitě rozepsaný.
A jinak sorry, ale trvdit o něčem, že to nemá hlavu ani patu když máš k dispozici i zdroják na otestování, je trochu ubohé.Mohu a budu s klidem tvrdit, že to nemá to hlavu ani patu, i kdyby k tomu bylo deset testovacích zdrojáků, pokud nemá hlavu ani patu původní formulace problému.
Ta funkce je taky hodně primitivní, takže sis chtěl asi jen rýpnout ne...?Primitivní funkce je (zhruba řečeno) taková, kterou když zderivuji, dostanu původní funkci. Tato vlastnost není kvantifikovatelná. Buď funkce k dané funkci primitivní je, nebo není, nemůže být více nebo méně primitivní.
S tou druhou derivací to zase takový blábol nebude, protože nehledám parciální, ale úplnou.Děkuji za potvrzení, že to je naprostý blábol. Parciální derivace je derivace podle jednoho argumentu. Totální derivace je pojem, který má smysl, pouze pokud jsou některé argumenty funkcemi dalších argumentů/proměnných. To zde má nastávat konkrétně kde a jak? A i pak se v první totální derivaci vyksytují stále jen particální derivace. Totéž pro totální diferenciál.
Děkuji za potvrzení, že to je naprostý blábol. Parciální derivace je derivace podle jednoho argumentu. Totální derivace je pojem, který má smysl, pouze pokud jsou některé argumenty funkcemi dalších argumentů/proměnných. To zde má nastávat konkrétně kde a jak? A i pak se v první totální derivaci vyksytují stále jen particální derivace. Totéž pro totální diferenciál.Funkce x*y má diferenciál, a diferenciál diferenciálu, já fakt nevím, co je na tom nepochopytelné.
Dokážeš vůbec rozlišit mezi derivací a diferenciálem?Dokážu, ale netvářím se, že to spolu nesouvisí...
Nepochopitelné je, jak tu žonglueš matematickými pojmy.No vidíš, a ty do toho přidáváš elektrárny a mosty. Máš tu nejvíc příspěvků, a trumfl tě ten nejmenší co tu je.
"d" se v jednom kroku zvětší o C*x*dy + C*dx*y (označíme "a") "C*x*dy" se zvětší o C*dx*dy "C*dx*y" se zvětčí také o C*dx*dy, tuto konstantu označíme "b/2" Takže "C*x*dy + C*dx*y" se zvětší o "b"Takže by mělo stačit něco ve smyslu:
d=x*y*C; a=C*(x*dx+dx*y); b=2*dx*dy*C; for(i=0; i<1000; i++) { printf("%f\n",d); d+=a; a+=b; }
d = x^2 * (r^2 - fy^2) + y^2 * (r^2 - fx^2) + x*y * (2*fx*fy)Ale problém jsem měl právě s tím x*y:) Celý kód je zde: http://code.google.com/p/fog/source/browse/trunk/Fog/Fog/G2d/Render/Render_C/PGradientRadial_p.h
Tiskni Sdílej: