Byly zveřejněny informace o kritické zranitelnosti CVE-2025-55182 s CVSS 10.0 v React Server Components. Zranitelnost je opravena v Reactu 19.0.1, 19.1.2 a 19.2.1.
Bylo rozhodnuto, že nejnovější Linux 6.18 je jádrem s prodlouženou upstream podporou (LTS). Ta je aktuálně plánována do prosince 2027. LTS jader je aktuálně šest: 5.10, 5.15, 6.1, 6.6, 6.12 a 6.18.
Byla vydána nová stabilní verze 3.23.0, tj. první z nové řady 3.23, minimalistické linuxové distribuce zaměřené na bezpečnost Alpine Linux (Wikipedie) postavené na standardní knihovně jazyka C musl libc a BusyBoxu. Přehled novinek v poznámkách k vydání.
Byla vydána verze 6.0 webového aplikačního frameworku napsaného v Pythonu Django (Wikipedie). Přehled novinek v poznámkách k vydání.
Po více než 7 měsících vývoje od vydání verze 6.8 byla vydána nová verze 6.9 svobodného open source redakčního systému WordPress. Kódové jméno Gene bylo vybráno na počest amerického jazzového klavíristy Gene Harrise (Ray Brown Trio - Summertime).
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za listopad (YouTube).
Google Chrome 143 byl prohlášen za stabilní. Nejnovější stabilní verze 143.0.7499.40 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 13 bezpečnostních chyb.
Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,2 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,42 %. Procesor AMD používá 66,72 % hráčů na Linuxu.
Canonical oznámil (YouTube), že nově nabízí svou podporu Ubuntu Pro také pro instance Ubuntu na WSL (Windows Subsystem for Linux).
Samsung představil svůj nejnovější chytrý telefon Galaxy Z TriFold (YouTube). Skládačka se nerozkládá jednou, ale hned dvakrát, a nabízí displej s úhlopříčkou 10 palců. V České republice nebude tento model dostupný.
int i;
double x, dx;
double y, dy;
double C;
// nějaké startovní podmínky
x = 5;
y = 7;
C = 4.55;
// dx/dy je lineární.
dx = 0.1;
dy = 0.05;
for (i = 0; i < 1000; i++)
{
double d = x * y * C;
printf("%f\n", d);
x += dx;
y += dy;
}
Můj problém je, že bych v tom cyklu chtěl jen sčítat, takto bych si to představoval:
int i;
double x, dx;
double y, dy;
double C;
// nějaké startovní podmínky
x = 5;
y = 7;
C = 4.55;
// dx/dy je lineární.
dx = 0.1;
dy = 0.05;
// výpočet d a delty, popřípadě delta-delta?
double d = x * y * C;
double delta = ???
for (i = 0; i < 1000; i++)
{
printf("%f\n", d);
d += delta;
}
Pro výpočet delty jsem zkusil více možností, jsem si celkem jistý, že tam musí být y*dx*C + x*dy*C, ale něco mi tam chybí.
Takže, je tu nějaký zkušený matematik, co by věděl:_) ?
import math
def f(x, y, C):
return x * y * C
x = 1.5
y = 1.9
C = 1.4
dx = 1.5
dy = 1.1
d = f(x, y, C)
d_d = x * dy * C + y * dx * C + dx * dy * C
d_d_d = dx * C + dy * C
for i in xrange(0, 10):
a = f(x, y, C)
d
if abs(a - d) > 0.001:
print "a=%f b=%f (FAILED)" % (a, d)
else:
print "a=%f b=%f (OK)" % (a, d)
d += d_d
d_d += d_d_d
x += dx
y += dy
Je potřeba i druhá derivace funkce, takže mám 2 přírůstky (d, d_d), které jsou:
d = x * dy * C + y * dx * C + dx * dy * C d_d = 2 * C * dx * dyTakže uzavřít
import math
def f(x, y, C):
return x * y * C
x = 1.5
y = 1.9
C = 1.4
dx = 1.9
dy = 1.5
d = f(x, y, C)
d_d = x * dy * C + y * dx * C + dx * dy * C # První
d_d_d = 2 * C * dx * dy # Druhá
for i in xrange(0, 10):
a = f(x, y, C)
if abs(a - d) > 0.001:
print "a=%f b=%f (FAILED)" % (a, d)
else:
print "a=%f b=%f (OK)" % (a, d)
d += d_d
d_d += d_d_d
x += dx
y += dy
Šlo o to, abych spočítal průběh té funkce, aniž bych musel dosazovat do f()No dobře, to je popis toho, co děláš. Ale tím, že to popíšeš, to nezačne dávat smysl. Proč nechceš počítat hodnotu funkce, když ji spočítat dovedeš? Je to skoro vždy mnohem jednodušší než numerická integrace -- v tvém případě je to zcela evidentně jednodušší. Jediná důležitá praktická výjimka, kterou znám, je obecný Bresenhamův algoritmus pro rasterizaci algebraických křivek, ale tam je to právě tou diskretizací do rastru. A že to s tou druhou derivací provádí něco smysluplného je zde dáno čistě tím, že Taylorův rozvoj té funkce končí u druhého řádu. Takže ve skutečnosti počítáš přímo zase hodnotu té funkce, akorát ten polynom máš hrozně složitě rozepsaný.
A jinak sorry, ale trvdit o něčem, že to nemá hlavu ani patu když máš k dispozici i zdroják na otestování, je trochu ubohé.Mohu a budu s klidem tvrdit, že to nemá to hlavu ani patu, i kdyby k tomu bylo deset testovacích zdrojáků, pokud nemá hlavu ani patu původní formulace problému.
Ta funkce je taky hodně primitivní, takže sis chtěl asi jen rýpnout ne...?Primitivní funkce je (zhruba řečeno) taková, kterou když zderivuji, dostanu původní funkci. Tato vlastnost není kvantifikovatelná. Buď funkce k dané funkci primitivní je, nebo není, nemůže být více nebo méně primitivní.
S tou druhou derivací to zase takový blábol nebude, protože nehledám parciální, ale úplnou.Děkuji za potvrzení, že to je naprostý blábol. Parciální derivace je derivace podle jednoho argumentu. Totální derivace je pojem, který má smysl, pouze pokud jsou některé argumenty funkcemi dalších argumentů/proměnných. To zde má nastávat konkrétně kde a jak? A i pak se v první totální derivaci vyksytují stále jen particální derivace. Totéž pro totální diferenciál.
Děkuji za potvrzení, že to je naprostý blábol. Parciální derivace je derivace podle jednoho argumentu. Totální derivace je pojem, který má smysl, pouze pokud jsou některé argumenty funkcemi dalších argumentů/proměnných. To zde má nastávat konkrétně kde a jak? A i pak se v první totální derivaci vyksytují stále jen particální derivace. Totéž pro totální diferenciál.Funkce x*y má diferenciál, a diferenciál diferenciálu, já fakt nevím, co je na tom nepochopytelné.
Dokážeš vůbec rozlišit mezi derivací a diferenciálem?Dokážu, ale netvářím se, že to spolu nesouvisí...
Nepochopitelné je, jak tu žonglueš matematickými pojmy.No vidíš, a ty do toho přidáváš elektrárny a mosty. Máš tu nejvíc příspěvků, a trumfl tě ten nejmenší co tu je.
"d" se v jednom kroku zvětší o C*x*dy + C*dx*y (označíme "a") "C*x*dy" se zvětší o C*dx*dy "C*dx*y" se zvětčí také o C*dx*dy, tuto konstantu označíme "b/2" Takže "C*x*dy + C*dx*y" se zvětší o "b"Takže by mělo stačit něco ve smyslu:
d=x*y*C;
a=C*(x*dx+dx*y);
b=2*dx*dy*C;
for(i=0; i<1000; i++) {
printf("%f\n",d);
d+=a;
a+=b;
}
d = x^2 * (r^2 - fy^2) + y^2 * (r^2 - fx^2) + x*y * (2*fx*fy)Ale problém jsem měl právě s tím x*y:) Celý kód je zde: http://code.google.com/p/fog/source/browse/trunk/Fog/Fog/G2d/Render/Render_C/PGradientRadial_p.h
Tiskni
Sdílej: