Máirín Duffy a Brian Smith v článku pro Fedora Magazine ukazují použití LLM pro diagnostiku systému (Fedora Linuxu) přes Model Context Protocol od firmy Anthropic. I ukázkové výstupy v samotném článku obsahují AI vygenerované nesmysly, např. doporučení přeinstalovat balíček pomocí správce balíčků APT z Debianu místo DNF nativního na Fedoře.
Projekt D7VK dospěl do verze 1.0. Jedná se o fork DXVK implementující překlad volání Direct3D 7 na Vulkan. DXVK zvládá Direct3D 8, 9, 10 a 11.
Byla vydána nová verze 2025.4 linuxové distribuce navržené pro digitální forenzní analýzu a penetrační testování Kali Linux (Wikipedie). Přehled novinek se seznamem nových nástrojů v oficiálním oznámení na blogu.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) zveřejnil Národní politiku koordinovaného zveřejňování zranitelností (pdf), jejímž cílem je nejen zvyšování bezpečnosti produktů informačních a komunikačních technologií (ICT), ale také ochrana objevitelů zranitelností před negativními právními dopady. Součástí je rovněž vytvoření „koordinátora pro účely CVD“, jímž je podle nového zákona o kybernetické … více »
Vývojáři KDE oznámili vydání balíku aplikací KDE Gear 25.12. Přehled novinek i s náhledy a videi v oficiálním oznámení.
Společnost System76 vydala Pop!_OS 24.04 LTS s desktopovým prostředím COSMIC. Videoukázky na YouTube.
Byla vydána verze 1.92.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Free Software Foundation zveřejnila ocenění Free Software Awards za rok 2024. Oceněni byli Andy Wingo, jeden ze správců GNU Guile, Alx Sa za příspěvky do Gimpu a Govdirectory jako společensky prospěšný projekt.
Bylo vydáno Eclipse IDE 2025-12 aneb Eclipse 4.38. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
U příležitosti oslav osmi let prací na debianím balíčku vyšlo GPXSee 15.6. Nová verze přináší především podporu pro geotagované MP4 soubory, včetně GoPro videí. Kdo nechce čekat, až nová verze dorazí do jeho distribuce, nalezne zdrojové kódy na GitHubu.
) ...
from select import select
import pty
import os,sys
import subprocess as sub
import time
(pid,fd) = pty.fork()
if pid == 0:
sub.call("python slave.py",shell=True)
else:
time.sleep(0.5)
sent = 0
while True:
for i in range(0,10):
select([],[fd],[])
size = os.write(fd,"x"*1000)
#os.write(fd,"\n")
sent += size
print(str(sent))
time.sleep(5)
slave.py
import fcntl
import os,sys
from select import select
import tty
sys.stdout = open("log","w",0)
# make stdin a non-blocking file
fd = sys.stdin.fileno()
fl = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK)
#
tty.setraw(fd)
#
#sys.stdin = os.fdopen(sys.stdin.fileno(), 'r', 0)
bytes_read = 0
print("on")
while True:
rlist,_,_ = select([sys.stdin],[],[],1)
if sys.stdin in rlist:
string = sys.stdin.read(200)
bytes_read += len(string)
print(str(bytes_read))
else:
print("not ready")
a ted kdyz pustim 'python master.py' a v terminalu vedle 'tail -f log' tak vidim ze poslednich 800 poslanych bytu zustane v bufferu, select rika ze sys.stdin neni ready pro cteni (protoze master.py nezapsala zadny novy data) a tech 800 bytu z buffer se precte az potom co master.py posle dalsi data do PTY
Kdyz odkomentuju tu lajnu v slave.py ktera nastavuje velikost bufferu na 0 tak to jede hezky.
Tohle pak vedlo k deadlocku v tom programku co pisu.
from select import select
import pty
import os,sys
import subprocess as sub
import time
(pid,fd) = pty.fork()
if pid == 0:
sub.call("python slave.py",shell=True)
else:
time.sleep(0.5)
sent = 0
while True:
os.write(fd,"DATA")
os.write(fd,"DATA")
os.write(fd,"DATA")
os.write(fd,"DATA")
os.write(fd,"DATA")
os.write(fd,"YOYO")
select([fd],[],[])
string = os.read(fd,1024)
if string == "YOYO":
print("master received: YOYO\n")
else:
print("master:DEAD")
slave.py
import fcntl
import os,sys
from select import select
import tty
log = open("log","w",0)
# make stdin a non-blocking file
fd = sys.stdin.fileno()
fl = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK)
#
tty.setraw(fd)
#
#sys.stdin = os.fdopen(sys.stdin.fileno(), 'r', 0)
data_read = ""
log.write("on\n")
while True:
rlist,_,_ = select([sys.stdin],[],[],1)
if sys.stdin in rlist:
data_read += sys.stdin.read(10)
while len(data_read) >= 4:
msg = data_read[:4]
data_read = data_read[4:]
log.write("slave: received "+msg+"\n")
if msg == "YOYO":
log.write("slave: sending YOYO\n")
sys.stdout.write("YOYO")
sys.stdout.flush()
else:
log.write("not ready\n")
Kdyz pustite master.py a tail -f log tak vydite ze se zpracuji pouze prvni dve zpravy "DATA" a vse se zasekne.
Pokud zmenite sys.stdin.read(10) v slave.py na sys.stdin.read(24) vse bude fungovat krasne v nekonecnem loopu. Pokud odkomentujete v slave.py radek sys.stdin = os.fdopen(sys.stdin.fileno(), 'r', 0) tak vsechno bude chodit krasne v loopu i kdyz nechate sys.stdin.read(10)
A ted moje otazka: Proc to tak je ... je toto chovani nekde zdokumentovano? Tyka se to pouze PTY ? A hlavne proc select nerika "jo sys.stdin je ready ke cteni" kdyz vi ze jsou v bufferu sys.stdin data ktera sys.stdin.read muze precist?
sys.stdin.read(10)Tohle nemůže se selectem dobře fungovat, je to vysokoúrovňové bufferující API, podobně jako funkce ANSI C nad FILE strukturama. Volání
select.select je nízkoúrovňové API a lze kombinovat
pouze s nízkoúrovňovým čtením, tedy os.read.
Jako hraní super, ale Python na něco takového absolutně není určený. Doporučuju zůstat jen u pokusů, případně si ty pokusy udělat i v céčku. Na skutečné asynchronní aplikace je lepší použít nějakou pythoní knihovnu, která to celé poskládá, případě si céčkovskou
asynchronní knihovnu napsat a implementovat v ní pythoní rozhraní,
pokud už to člověk musí nutně zkoušet na vlastní kůži.
. Tady to takto lowlevel byt musi kvuli PTY a non-blocking non-buffering stdio (ale treba to fcntl je jen copy&paste). A tohle byla jedina vec ktera me v pythonu nachytala a v C by se nestala (ale taky jsem na tomhle stravil asi 10h
) ale i tak by mi to v C trvalo aspon petkrat tak dlouho nez v pythonu a nejspis bych to nikdy nedokoncil.
Kdyz mas sys.stdin jako priklad primo v python docs tady tak me to zmatlo dobre. Imho bude sys.stdin fungovat dobre se select pokud neni v PTY.
No kazdopadne ted uz jsem se poucil a a priste si budu davat pozor kombinovat select s high level objekty. Diky.
...
Jo a to co kodim bych hranim nenazyval
, ono je to uzitecny a kodim to jen proto ze jsem zadny program co by resil stejny problem nenasel - a sam bych to na vlastni kuzi taky raci nezkousel ale jak rikam, neumim twisted.
Na nízkoúrovňové čtení bych radši zůstal u nízkoúrovňových funkcí. ty dokonce fungují i bez přepnutí fd do neblokujícího režimu (testováno v C).Jo, ted uz jsem se poucil a priste to presne takhle resit budu
jedina vec ktera me v pythonu nachytala a v C by se nestalaTo je tím, že python používá pro funkce namespacing, ať už pomocí modulů nebo tříd, popřípadě i objektů (to umí C taky, ale i tak funkce musí mít název alespoň na úrovni modulu). Takže se více funkcí jmenuje read, přitom jsou principiálně odlišné a pracují na odlišné úrovni.
ale i tak by mi to v C trvalo aspon petkrat tak dlouho nez v pythonu a nejspis bych to nikdy nedokoncil.Tak pokud ty céčkoviny zabírají jen nějaký jeden malý modul, takto může být jednodušší než se učit pythoní C API.
Kdyz mas sys.stdin jako priklad primo v python docs tady tak me to zmatlo dobre.To se dá buď brát jako chyba v manuálu nebo jako popis příliš spoléhající na znalosti čtenáře. On si totiž select umí ten deskriptor zřejmě z objektu vytáhnout sám, takže file objekt je sám o sobě ok. Problém je v implementaci file.read(), která i podle manuálu spouští fread(), což nemusí fungovat. Prostě se počítá s tím, že čtení bude realizováno takto:
os.read(f.fileno())
Imho bude sys.stdin fungovat dobre se select pokud neni v PTY.To těžko.
Jo a to co kodim bych hranim nenazyvalTwisted umí být komplikovaný, ale dá se naučit. Jednou jsem v tom něco zkoušel. Problém je, že twisted nejde dobře kombinovat s jinými a spoustu věcí neumí. Ale na asynchronní přístup v C se mi osvědčil glib. V Pythonu se dá použít gobject introspection, takže můžeš pracovat jak v C tak v Pythonu, aniž byses učil pythoní C API., ono je to uzitecny a kodim to jen proto ze jsem zadny program co by resil stejny problem nenasel - a sam bych to na vlastni kuzi taky raci nezkousel ale jak rikam, neumim twisted.
Tak pokud ty céčkoviny zabírají jen nějaký jeden malý modul, takto může být jednodušší než se učit pythoní C API.Jeste to tak abych se ucil
me uplne staci jak vypada popis funkce forkpty() v C a naproti tomu pty.fork() v pythonu
... a jeste to kompilovat pro cygwin apod. tady me budes tezko presvedcovat ze jsem to mel psat v C
Imho bude sys.stdin fungovat dobre se select pokud neni v PTY. To těžko.Pokud tam pude stdin pres pajpu. To by pak vysvetlovalo ten manual. Jestli v tom manualu mysleli pouzite sys.stdin v select a pak ctete os.read(0,1024) tak je to dost nekonzistetni.
Problém je, že twisted nejde dobře kombinovat s jinými a spoustu věcí neumí.To byl dalsi duvod proc jsem se mu vyhnul.
Jeste to tak abych se ucilTak cygwin je unix jako každý jiný, že :), linuxové distribuci je prostředí cygwinu dost blízké. Jinak bacha, kdybys používal Python přímo na windows, tak spousta věcí funguje trochu jinak. Zvlášť těch nízkoúrovňových. Ono se na první pohled zdá, že vespod je úplně stejná unixovská vrstva, ale není to úplně pravda. Dělal jsem začátečnické školení Pythonu ve firmě se smíšenou výbavou účastnických počítačů a ty Windows jsme dost řešili. Ale všechno nějak vyřešit šlo.me uplne staci jak vypada popis funkce forkpty() v C a naproti tomu pty.fork() v pythonu
... a jeste to kompilovat pro cygwin apod. tady me budes tezko presvedcovat ze jsem to mel psat v C
To byl dalsi duvod proc jsem se mu vyhnul.To je obecný problém kombinace synchronních a asynchronních API, bez ohledu na jazyk. Problém je v tom, že Python je většinou tvůrců knihoven vnímán jako skriptovací jazyk a pro ten sjou synchronní API typická. Problém je, že z asynchronního API jde synchronní vyrobit celkem lehce (v dynamickém jazyce zvlášť), zatímco naopak to nejde a jedinou možností je vláknovat. Spousta vývojářů i core pythoních věcí zase neřeší vlánka, tak se pro jistotu zamyká celý interpret a paralelní zpracování pythoních vláken je z principu vyloučené, tudíž multiprocessing vychází v pythonu mnohem rychlejší než multithreading. Paradoxem ovšem je, že komunikace mezi procesy je synchronní a tudíž i při multiprocessingu je předávání zpráv realizováno vláknem (tedy multithreadingem).
Tiskni
Sdílej: