V červenci loňského roku organizace Apache Software Foundation (ASF) oznámila, že se částečně přestane dopouštět kulturní apropriace a změní své logo. Dnes bylo nové logo představeno. "Indiánské pírko" bylo nahrazeno dubovým listem a text Apache Software Foundation zkratkou ASF. Slovo Apache se bude "zatím" dál používat. Oficiální název organizace zůstává Apache Software Foundation, stejně jako názvy projektů, například Apache HTTP Server.
Byla vydána (𝕏) srpnová aktualizace aneb nová verze 1.104 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.104 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Spotify spustilo přehrávání v bezztrátové kvalitě. V předplatném Spotify Premium.
Spoluzakladatel a předseda správní rady americké softwarové společnosti Oracle Larry Ellison vystřídal spoluzakladatele automobilky Tesla a dalších firem Elona Muska na postu nejbohatšího člověka světa. Hodnota Ellisonova majetku díky dnešnímu prudkému posílení ceny akcií Oraclu odpoledne vykazovala nárůst o více než 100 miliard dolarů a dosáhla 393 miliard USD (zhruba 8,2 bilionu Kč). Hodnota Muskova majetku činila zhruba 385 miliard dolarů.
Bylo vydáno Eclipse IDE 2025-09 aneb Eclipse 4.37. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
T-Mobile od 15. září zpřístupňuje RCS (Rich Communication Services) zprávy i pro iPhone.
Společnost ARM představila platformu Arm Lumex s Arm C1 CPU Cluster a Arm Mali G1-Ultra GPU pro vlajkové chytré telefony a počítače nové generace.
Unicode Consortium, nezisková organizace koordinující rozvoj standardu Unicode, oznámila vydání Unicode 17.0. Přidáno bylo 4 803 nových znaků. Celkově jich je 159 801. Přibylo 7 nových Emoji.
Apple představil (YouTube) telefony iPhone 17 Pro a iPhone 17 Pro Max, iPhone 17 a iPhone Air, sluchátka AirPods Pro 3 a hodinky Watch Series 11, Watch SE 3 a Watch Ultra 3.
Realtimová strategie Warzone 2100 (Wikipedie) byla vydána ve verzi 4.6.0. Podrobný přehled novinek, změn a oprav v ChangeLogu na GitHubu. Nejnovější verzi Warzone 2100 lze již instalovat také ze Snapcraftu a Flathubu.
// Most significant bit first (big-endian) // x^16+x^12+x^5+1 = (1) 0001 0000 0010 0001 = 0x1021 function crc(byte array string[1..len], int len) { rem := 0 // A popular variant complements rem here for i from 1 to len { rem := rem xor (string[i] leftShift (n-8)) // n = 16 in this example for j from 1 to 8 { // Assuming 8 bits per byte if rem and 0x8000 { // if leftmost (most significant) bit is set rem := (rem leftShift 1) xor 0x1021 } else { rem := rem leftShift 1 } rem := rem and 0xffff // Trim remainder to 16 bits } } // A popular variant complements rem here return rem }Je to CRC-16. Řekněme, že chcu počítat CRC-4, budu si předpočítávat tabulku, takže pro každý byte si spočítám element:
// pro každý 8b byte "nějakejByte" byte rem := 0 xor (nějakejByte leftShift (4-8)) for j from 1 to 8 { // if rem and 0x8 { rem := (rem leftShift 1) xor poly } else { rem := rem leftShift 1 } rem := rem and 0x7 } tabulka[nějakejByte] := remVyjde mi tam posun vlevo o -4 (4-8) ??? To se mi nezdá.
Řešení dotazu:
module jardik.checksum.crc; import jardik.inttypes; import std.traits; public struct CRCIntTraits(const size_t _CRC_BITS, _IntType = UIntFast!(_CRC_BITS)) { static const size_t CRC_BITS = _CRC_BITS; alias IntType = _IntType; static assert(isIntegral!(IntType), "Integral type required"); static assert(IntType.sizeof * 8 >= CRC_BITS, "Integral doesn't have enough bits"); static const IntType ZERO = 0; static const IntType ONE = 1; static const IntType CRC_HIBIT = ONE << (CRC_BITS-1); static if (CRC_BITS < IntType.sizeof * 8) { static const IntType CRC_MASK = ~cast(IntType)(~ZERO << CRC_BITS); static pure IntType crcMask(IntType val) { return val & CRC_MASK; } } else { static const IntType CRC_MASK = ~ZERO; static pure IntType crcMask(IntType val) { return val; } } } private pure IntType reflect(const size_t NUM_BITS, IntType) (IntType value) { alias IntTraits = CRCIntTraits!(NUM_BITS, IntType); IntType result = IntTraits.ZERO; for (size_t i = 0; i < NUM_BITS; ++i) { if (value & IntTraits.ONE) { result |= (IntTraits.ONE << (NUM_BITS - 1 - i)); } value >>= 1; } return result; } public struct CRCPoly(const size_t _CRC_BITS) { static const size_t CRC_BITS = _CRC_BITS; alias IntTraits = CRCIntTraits!(CRC_BITS); alias IntType = IntTraits.IntType; IntType normalValue; IntType reflectedValue; static CRCPoly fromData(U)(in U[] polyData) { IntType value = IntTraits.ZERO; foreach(n; polyData) { assert(n < CRC_BITS); value |= IntTraits.ONE << n; } return normal(value); } static CRCPoly normal(IntType value) { return CRCPoly(value, reflect!(CRC_BITS)(value)); } static CRCPoly reflected(IntType value) { return CRCPoly(reflect!(CRC_BITS)(value), value); } } unittest { import std.stdio; import core.exception; printf(">> Testing CRC poly generator\n"); // CRC-4-ITU try { immutable ubyte[] crc4polyData = [0,1]; const uint crc4polyCheck = 0x3U; const uint crc4polyReflectedCheck = 0xCU; auto crc4poly = CRCPoly!(4).fromData(crc4polyData).normalValue; auto crc4polyReflected = CRCPoly!(4).fromData(crc4polyData).reflectedValue; assert(crc4poly == crc4polyCheck); assert(crc4polyReflected == crc4polyReflectedCheck); printf(" ... CRC-4 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-4 poly failed.\n"); } // CRC-32 try { immutable ubyte[] crc32polyData = [0,1,2,4,5,7,8,10,11,12,16,22,23,26]; const uint crc32polyCheck = 0x04C11DB7U; const uint crc32polyReflectedCheck = 0xEDB88320U; auto crc32poly = CRCPoly!(32).fromData(crc32polyData).normalValue; auto crc32polyReflected = CRCPoly!(32).fromData(crc32polyData).reflectedValue; assert(crc32poly == crc32polyCheck); assert(crc32polyReflected == crc32polyReflectedCheck); printf(" ... CRC-32 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-32 poly failed.\n"); } // CRC-64-ECMA try { immutable ubyte[] crc64polyData = [ 0,1,4,7,9,10,12,13,17,19,21,22,23,24,27,29,31, 32,33,35,37,38,39,40,45,46,47,52,53,54,55,57,62 ]; const ulong crc64polyCheck = 0x42F0E1EBA9EA3693UL; const ulong crc64polyReflectedCheck = 0xC96C5795D7870F42UL; auto crc64poly = CRCPoly!(64).fromData(crc64polyData).normalValue; auto crc64polyReflected = CRCPoly!(64).fromData(crc64polyData).reflectedValue; assert(crc64poly == crc64polyCheck); assert(crc64polyReflected == crc64polyReflectedCheck); printf(" ... CRC-64 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-64 poly failed.\n"); } } public class CRCTableGen(// number of CRC bits const size_t _CRC_BITS, // integer type backing the CRC table entry _IntType = UIntFast!(_CRC_BITS), // whether to reflect CRC table entries const bool REFLECT = false) { enum : size_t { CRC_BITS = _CRC_BITS } alias IntType = _IntType; alias IntTraits = CRCIntTraits!(CRC_BITS, IntType); alias FastIntType = UIntFast!(CRC_BITS); alias FastIntTraits = CRCIntTraits!(CRC_BITS, FastIntType); public static pure IntType[] generate(in CRCPoly!CRC_BITS poly) { IntType[] table = new IntType[256]; generateImpl(table, poly); return table; } public static pure IntType[] generate(IntType[] reuseTable, in CRCPoly!CRC_BITS poly) { IntType[] table = reuseTable.length < 256 ? new IntType[256] : reuseTable; generateImpl(table, poly); return table; } static if (!REFLECT) { private static pure void generateImpl(IntType[] table, in CRCPoly!CRC_BITS poly) { FastIntType remainder; FastIntType polyVal = poly.normalValue; for (size_t divident = 0; divident < 256; ++divident) { remainder = FastIntTraits.ZERO; for (size_t mask = 0x80; mask != 0; mask >>= 1) { if (divident & mask) remainder ^= FastIntTraits.CRC_HIBIT; if (remainder & FastIntTraits.CRC_HIBIT) { remainder <<= 1; remainder ^= polyVal; } else { remainder <<= 1; } } table[divident] = cast(IntType)FastIntTraits.crcMask(remainder); } } } else { private static pure void generateImpl(IntType[] table, in CRCPoly!CRC_BITS poly) { FastIntType rem; FastIntType polyVal = poly.reflectedValue; size_t k; for (size_t divident = 0; divident < 256; ++divident) { rem = cast(FastIntType)divident; for (k = 0; k < 8; ++k) rem = rem & 1 ? polyVal ^ (rem >> 1) : (rem >> 1); table[divident] = cast(IntType)FastIntTraits.crcMask(rem); } } } } unittest { import std.stdio; import core.exception; const auto poly = CRCPoly!(32)(0x04C11DB7U, 0xEDB88320U); uint[] crcTable = CRCTableGen!(32, uint, false).generate(poly); uint[] crcTableReflected = CRCTableGen!(32, uint, true).generate(poly); File f = File("crc32test.txt", "w"); f.writeln(" NORMAL | REFLECT "); f.writeln("---------|----------"); for (size_t i = 0; i < 256; ++i) { f.writefln("%08X | %08X", crcTable[i], crcTableReflected[i]); } auto crc4poly = CRCPoly!(4).normal(0b1011U); ubyte[] crc4table = CRCTableGen!(4, ubyte, false).generate(crc4poly); f = File("crc4test.txt", "w"); size_t i; for (i = 0; i < 256-8; i+=8) { f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X,", crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3], crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]); } f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X", crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3], crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]); } public class CRC(const size_t CRC_BITS, _TableIntType = FastInt!(CRC_BITS), const bool _REFLECT_DATA = false, const bool _REFLECT_REM = _REFLECT_DATA) { alias IntTraits = CRCIntTraits!(CRC_BITS); alias IntType = IntTraits.IntType; alias TableIntType = _TableIntType; alias TableGen = CRCTableGen!(CRC_BITS, TableIntType, _REFLECT_DATA); alias PolyType = CRCPoly!(CRC_BITS); const(TableIntType)[] m_table; IntType m_init; IntType m_xor; IntType m_val; public this(in PolyType poly, IntType initVal, IntType xorVal) { this(TableGen.generate(poly), initVal, xorVal); } public this(const(TableIntType)[] table, IntType initVal, IntType xorVal) { m_table = table; m_init = initVal; m_xor = xorVal; m_val = m_init; } public void reset() { m_val = m_init; } public void update(string str) { update(cast(const(ubyte[]))str); } static if (_REFLECT_DATA) { public void update(in ubyte[] buf) { size_t tableIndex; foreach (IntType b; buf) { tableIndex = cast(size_t)((m_val ^ b) & cast(IntType)0xFFU); m_val = cast(IntType)(m_table[tableIndex] ^ (m_val >> 8)); } } } else { public void update(in ubyte[] buf) { size_t tableIndex; foreach (IntType b; buf) { static if (CRC_BITS < 8) tableIndex = cast(size_t)(b ^ (m_val << (8 - CRC_BITS))); else tableIndex = cast(size_t)(b ^ (m_val >> (CRC_BITS - 8))); m_val = IntTraits.crcMask(cast(IntType)(m_table[tableIndex] ^ (m_val << 8))); } } } public IntType peek() const { static if (_REFLECT_REM == _REFLECT_DATA) { return IntTraits.crcMask(m_val ^ m_xor); } else { return IntTraits.crcMask(reflect!(CRC_BITS, IntType)(m_val) ^ m_xor); } } public IntType finish() { IntType crcVal = peek(); reset(); return crcVal; } } public class CRC32 : CRC!(32, uint, true, true) { public this() { //super(PolyType.normal(0x04C11DB7U), 0xFFFFFFFFU, 0xFFFFFFFFU); super(PolyType.reflected(0xEDB88320U), 0xFFFFFFFFU, 0xFFFFFFFFU); } public this(const(uint)[] table) { super(table, 0xFFFFFFFFU, 0xFFFFFFFFU); } } unittest { import std.stdio; import core.exception; printf(">> Testing CRC32\n"); try { CRC32 crc32 = new CRC32(); crc32.update("abc"); ulong crc = crc32.finish(); assert(crc == 0x352441C2U); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC4 poly = 0xB\n"); try { auto crc4 = new CRC!(4, ushort, false, false)(CRCPoly!(4).normal(0xB), 0, 0); crc4.update("abcdef"); assert(crc4.finish() == 0x2); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC4 poly = 0xB, reflected\n"); try { auto crc4 = new CRC!(4, ushort, true, true)(CRCPoly!(4).normal(0xB), 0, 0); crc4.update("abcdef"); assert(crc4.finish() == 0x8); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC16-CCITT\n"); try { auto poly = CRCPoly!(16).normal(0x1021); auto crc16ccitt = new CRC!(16, ushort, false, false)(poly, 0xffff, 0); crc16ccitt.update("abcdef"); assert(crc16ccitt.finish() == 0x34ED); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC16\n"); try { auto poly = CRCPoly!(16).normal(0x8005); auto crc16 = new CRC!(16, ushort, true, true)(poly, 0, 0); crc16.update("abcdef"); assert(crc16.finish() == 0x5805); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC-12\n"); try { auto poly = CRCPoly!(12).normal(0x80F); auto crc = new CRC!(12, ushort, false, false)(poly, 0, 0); crc.update("abcdef"); assert(crc.finish() == 0x6C7); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC-12 reflected\n"); try { auto poly = CRCPoly!(12).normal(0x80F); auto crc = new CRC!(12, ushort, true, true)(poly, 0, 0); crc.update("abcdef"); assert(crc.finish() == 0xFE6); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } } int main() { return 0; }
Tiskni
Sdílej: