Organizace Free Software Foundation Europe (FSFE) zrušila svůj účet na 𝕏 (Twitter) s odůvodněním: "To, co mělo být původně místem pro dialog a výměnu informací, se proměnilo v centralizovanou arénu nepřátelství, dezinformací a ziskem motivovaného řízení, což je daleko od ideálů svobody, za nimiž stojíme". FSFE je aktivní na Mastodonu.
Paramount nabízí za celý Warner Bros. Discovery 30 USD na akcii, tj. celkově o 18 miliard USD více než nabízí Netflix. V hotovosti.
Nájemný botnet Aisuru prolomil další "rekord". DDoS útok na Cloudflare dosáhl 29,7 Tbps. Aisuru je tvořený až čtyřmi miliony kompromitovaných zařízení.
Iced, tj. multiplatformní GUI knihovna pro Rust, byla vydána ve verzi 0.14.0.
FEX, tj. open source emulátor umožňující spouštět aplikace pro x86 a x86_64 na architektuře ARM64, byl vydán ve verzi 2512. Před pár dny FEX oslavil sedmé narozeniny. Hlavní vývojář FEXu Ryan Houdek v oznámení poděkoval společnosti Valve za podporu. Pierre-Loup Griffais z Valve, jeden z architektů stojících za SteamOS a Steam Deckem, v rozhovoru pro The Verge potvrdil, že FEX je od svého vzniku sponzorován společností Valve.
Byla vydána nová verze 2.24 svobodného video editoru Flowblade (GitHub, Wikipedie). Přehled novinek v poznámkách k vydání. Videoukázky funkcí Flowblade na Vimeu. Instalovat lze také z Flathubu.
Společnost Proton AG stojící za Proton Mailem a dalšími službami přidala do svého portfolia online tabulky Proton Sheets v Proton Drive.
O víkendu (15:00 až 23:00) probíha EmacsConf 2025, tj. online konference vývojářů a uživatelů editoru GNU Emacs. Sledovat ji lze na stránkách konference. Záznamy budou k dispozici přímo z programu.
Provozovatel internetové encyklopedie Wikipedia jedná s velkými technologickými firmami o uzavření dohod podobných té, kterou má s Googlem. Snaží se tak zpeněžit rostoucí závislost firem zabývajících se umělou inteligencí (AI) na svém obsahu. Firmy využívají volně dostupná data z Wikipedie k trénování jazykových modelů, což zvyšuje náklady, které musí nezisková organizace provozující Wikipedii sama nést. Automatické programy
… více »Evropská komise obvinila síť 𝕏 z porušení unijních pravidel, konkrétně nařízení Evropské unie o digitálních službách (DSA). Vyměřila jí za to pokutu 120 milionů eur (2,9 miliardy Kč). Pokuta je podle názoru amerického ministra zahraničí útokem zahraničních vlád na americký lid. K pokutě se vyjádřil i americký viceprezident: „EU by měla podporovat svobodu projevu, a ne útočit na americké společnosti kvůli nesmyslům“.
// Most significant bit first (big-endian)
// x^16+x^12+x^5+1 = (1) 0001 0000 0010 0001 = 0x1021
function crc(byte array string[1..len], int len) {
rem := 0
// A popular variant complements rem here
for i from 1 to len {
rem := rem xor (string[i] leftShift (n-8)) // n = 16 in this example
for j from 1 to 8 { // Assuming 8 bits per byte
if rem and 0x8000 { // if leftmost (most significant) bit is set
rem := (rem leftShift 1) xor 0x1021
} else {
rem := rem leftShift 1
}
rem := rem and 0xffff // Trim remainder to 16 bits
}
}
// A popular variant complements rem here
return rem
}
Je to CRC-16. Řekněme, že chcu počítat CRC-4, budu si předpočítávat tabulku, takže pro každý byte si spočítám element:
// pro každý 8b byte "nějakejByte"
byte rem := 0 xor (nějakejByte leftShift (4-8))
for j from 1 to 8 { //
if rem and 0x8 {
rem := (rem leftShift 1) xor poly
}
else {
rem := rem leftShift 1
}
rem := rem and 0x7
}
tabulka[nějakejByte] := rem
Vyjde mi tam posun vlevo o -4 (4-8) ??? To se mi nezdá.
Řešení dotazu:
module jardik.checksum.crc;
import jardik.inttypes;
import std.traits;
public struct CRCIntTraits(const size_t _CRC_BITS,
_IntType = UIntFast!(_CRC_BITS))
{
static const size_t CRC_BITS = _CRC_BITS;
alias IntType = _IntType;
static assert(isIntegral!(IntType), "Integral type required");
static assert(IntType.sizeof * 8 >= CRC_BITS, "Integral doesn't have enough bits");
static const IntType ZERO = 0;
static const IntType ONE = 1;
static const IntType CRC_HIBIT = ONE << (CRC_BITS-1);
static if (CRC_BITS < IntType.sizeof * 8)
{
static const IntType CRC_MASK = ~cast(IntType)(~ZERO << CRC_BITS);
static pure IntType crcMask(IntType val) {
return val & CRC_MASK;
}
}
else {
static const IntType CRC_MASK = ~ZERO;
static pure IntType crcMask(IntType val) {
return val;
}
}
}
private pure IntType reflect(const size_t NUM_BITS,
IntType)
(IntType value)
{
alias IntTraits = CRCIntTraits!(NUM_BITS, IntType);
IntType result = IntTraits.ZERO;
for (size_t i = 0; i < NUM_BITS; ++i)
{
if (value & IntTraits.ONE) {
result |= (IntTraits.ONE << (NUM_BITS - 1 - i));
}
value >>= 1;
}
return result;
}
public struct CRCPoly(const size_t _CRC_BITS)
{
static const size_t CRC_BITS = _CRC_BITS;
alias IntTraits = CRCIntTraits!(CRC_BITS);
alias IntType = IntTraits.IntType;
IntType normalValue;
IntType reflectedValue;
static CRCPoly fromData(U)(in U[] polyData)
{
IntType value = IntTraits.ZERO;
foreach(n; polyData)
{
assert(n < CRC_BITS);
value |= IntTraits.ONE << n;
}
return normal(value);
}
static CRCPoly normal(IntType value) {
return CRCPoly(value, reflect!(CRC_BITS)(value));
}
static CRCPoly reflected(IntType value) {
return CRCPoly(reflect!(CRC_BITS)(value), value);
}
}
unittest
{
import std.stdio;
import core.exception;
printf(">> Testing CRC poly generator\n");
// CRC-4-ITU
try {
immutable ubyte[] crc4polyData = [0,1];
const uint crc4polyCheck = 0x3U;
const uint crc4polyReflectedCheck = 0xCU;
auto crc4poly = CRCPoly!(4).fromData(crc4polyData).normalValue;
auto crc4polyReflected = CRCPoly!(4).fromData(crc4polyData).reflectedValue;
assert(crc4poly == crc4polyCheck);
assert(crc4polyReflected == crc4polyReflectedCheck);
printf(" ... CRC-4 poly passed.\n");
}
catch (AssertError) {
printf(" ... CRC-4 poly failed.\n");
}
// CRC-32
try {
immutable ubyte[] crc32polyData = [0,1,2,4,5,7,8,10,11,12,16,22,23,26];
const uint crc32polyCheck = 0x04C11DB7U;
const uint crc32polyReflectedCheck = 0xEDB88320U;
auto crc32poly = CRCPoly!(32).fromData(crc32polyData).normalValue;
auto crc32polyReflected = CRCPoly!(32).fromData(crc32polyData).reflectedValue;
assert(crc32poly == crc32polyCheck);
assert(crc32polyReflected == crc32polyReflectedCheck);
printf(" ... CRC-32 poly passed.\n");
}
catch (AssertError) {
printf(" ... CRC-32 poly failed.\n");
}
// CRC-64-ECMA
try {
immutable ubyte[] crc64polyData = [
0,1,4,7,9,10,12,13,17,19,21,22,23,24,27,29,31,
32,33,35,37,38,39,40,45,46,47,52,53,54,55,57,62
];
const ulong crc64polyCheck = 0x42F0E1EBA9EA3693UL;
const ulong crc64polyReflectedCheck = 0xC96C5795D7870F42UL;
auto crc64poly = CRCPoly!(64).fromData(crc64polyData).normalValue;
auto crc64polyReflected = CRCPoly!(64).fromData(crc64polyData).reflectedValue;
assert(crc64poly == crc64polyCheck);
assert(crc64polyReflected == crc64polyReflectedCheck);
printf(" ... CRC-64 poly passed.\n");
}
catch (AssertError) {
printf(" ... CRC-64 poly failed.\n");
}
}
public class CRCTableGen(// number of CRC bits
const size_t _CRC_BITS,
// integer type backing the CRC table entry
_IntType = UIntFast!(_CRC_BITS),
// whether to reflect CRC table entries
const bool REFLECT = false)
{
enum : size_t { CRC_BITS = _CRC_BITS }
alias IntType = _IntType;
alias IntTraits = CRCIntTraits!(CRC_BITS, IntType);
alias FastIntType = UIntFast!(CRC_BITS);
alias FastIntTraits = CRCIntTraits!(CRC_BITS, FastIntType);
public static pure IntType[] generate(in CRCPoly!CRC_BITS poly)
{
IntType[] table = new IntType[256];
generateImpl(table, poly);
return table;
}
public static pure IntType[] generate(IntType[] reuseTable,
in CRCPoly!CRC_BITS poly)
{
IntType[] table = reuseTable.length < 256 ? new IntType[256] : reuseTable;
generateImpl(table, poly);
return table;
}
static if (!REFLECT)
{
private static pure void generateImpl(IntType[] table,
in CRCPoly!CRC_BITS poly)
{
FastIntType remainder;
FastIntType polyVal = poly.normalValue;
for (size_t divident = 0; divident < 256; ++divident)
{
remainder = FastIntTraits.ZERO;
for (size_t mask = 0x80; mask != 0; mask >>= 1)
{
if (divident & mask)
remainder ^= FastIntTraits.CRC_HIBIT;
if (remainder & FastIntTraits.CRC_HIBIT) {
remainder <<= 1;
remainder ^= polyVal;
}
else {
remainder <<= 1;
}
}
table[divident] = cast(IntType)FastIntTraits.crcMask(remainder);
}
}
}
else
{
private static pure void generateImpl(IntType[] table,
in CRCPoly!CRC_BITS poly)
{
FastIntType rem;
FastIntType polyVal = poly.reflectedValue;
size_t k;
for (size_t divident = 0; divident < 256; ++divident)
{
rem = cast(FastIntType)divident;
for (k = 0; k < 8; ++k)
rem = rem & 1 ? polyVal ^ (rem >> 1) : (rem >> 1);
table[divident] = cast(IntType)FastIntTraits.crcMask(rem);
}
}
}
}
unittest
{
import std.stdio;
import core.exception;
const auto poly = CRCPoly!(32)(0x04C11DB7U, 0xEDB88320U);
uint[] crcTable = CRCTableGen!(32, uint, false).generate(poly);
uint[] crcTableReflected = CRCTableGen!(32, uint, true).generate(poly);
File f = File("crc32test.txt", "w");
f.writeln(" NORMAL | REFLECT ");
f.writeln("---------|----------");
for (size_t i = 0; i < 256; ++i)
{
f.writefln("%08X | %08X", crcTable[i],
crcTableReflected[i]);
}
auto crc4poly = CRCPoly!(4).normal(0b1011U);
ubyte[] crc4table = CRCTableGen!(4, ubyte, false).generate(crc4poly);
f = File("crc4test.txt", "w");
size_t i;
for (i = 0; i < 256-8; i+=8)
{
f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X,",
crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3],
crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]);
}
f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X",
crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3],
crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]);
}
public class CRC(const size_t CRC_BITS,
_TableIntType = FastInt!(CRC_BITS),
const bool _REFLECT_DATA = false,
const bool _REFLECT_REM = _REFLECT_DATA)
{
alias IntTraits = CRCIntTraits!(CRC_BITS);
alias IntType = IntTraits.IntType;
alias TableIntType = _TableIntType;
alias TableGen = CRCTableGen!(CRC_BITS, TableIntType, _REFLECT_DATA);
alias PolyType = CRCPoly!(CRC_BITS);
const(TableIntType)[] m_table;
IntType m_init;
IntType m_xor;
IntType m_val;
public this(in PolyType poly, IntType initVal, IntType xorVal)
{
this(TableGen.generate(poly), initVal, xorVal);
}
public this(const(TableIntType)[] table, IntType initVal, IntType xorVal)
{
m_table = table;
m_init = initVal;
m_xor = xorVal;
m_val = m_init;
}
public void reset()
{
m_val = m_init;
}
public void update(string str)
{
update(cast(const(ubyte[]))str);
}
static if (_REFLECT_DATA)
{
public void update(in ubyte[] buf)
{
size_t tableIndex;
foreach (IntType b; buf)
{
tableIndex = cast(size_t)((m_val ^ b) & cast(IntType)0xFFU);
m_val = cast(IntType)(m_table[tableIndex] ^ (m_val >> 8));
}
}
}
else
{
public void update(in ubyte[] buf)
{
size_t tableIndex;
foreach (IntType b; buf)
{
static if (CRC_BITS < 8)
tableIndex = cast(size_t)(b ^ (m_val << (8 - CRC_BITS)));
else
tableIndex = cast(size_t)(b ^ (m_val >> (CRC_BITS - 8)));
m_val = IntTraits.crcMask(cast(IntType)(m_table[tableIndex] ^ (m_val << 8)));
}
}
}
public IntType peek() const
{
static if (_REFLECT_REM == _REFLECT_DATA) {
return IntTraits.crcMask(m_val ^ m_xor);
}
else {
return IntTraits.crcMask(reflect!(CRC_BITS, IntType)(m_val) ^ m_xor);
}
}
public IntType finish()
{
IntType crcVal = peek();
reset();
return crcVal;
}
}
public class CRC32 : CRC!(32, uint, true, true)
{
public this() {
//super(PolyType.normal(0x04C11DB7U), 0xFFFFFFFFU, 0xFFFFFFFFU);
super(PolyType.reflected(0xEDB88320U), 0xFFFFFFFFU, 0xFFFFFFFFU);
}
public this(const(uint)[] table) {
super(table, 0xFFFFFFFFU, 0xFFFFFFFFU);
}
}
unittest
{
import std.stdio;
import core.exception;
printf(">> Testing CRC32\n");
try {
CRC32 crc32 = new CRC32();
crc32.update("abc");
ulong crc = crc32.finish();
assert(crc == 0x352441C2U);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC4 poly = 0xB\n");
try {
auto crc4 = new CRC!(4, ushort, false, false)(CRCPoly!(4).normal(0xB), 0, 0);
crc4.update("abcdef");
assert(crc4.finish() == 0x2);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC4 poly = 0xB, reflected\n");
try {
auto crc4 = new CRC!(4, ushort, true, true)(CRCPoly!(4).normal(0xB), 0, 0);
crc4.update("abcdef");
assert(crc4.finish() == 0x8);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC16-CCITT\n");
try {
auto poly = CRCPoly!(16).normal(0x1021);
auto crc16ccitt = new CRC!(16, ushort, false, false)(poly, 0xffff, 0);
crc16ccitt.update("abcdef");
assert(crc16ccitt.finish() == 0x34ED);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC16\n");
try {
auto poly = CRCPoly!(16).normal(0x8005);
auto crc16 = new CRC!(16, ushort, true, true)(poly, 0, 0);
crc16.update("abcdef");
assert(crc16.finish() == 0x5805);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC-12\n");
try {
auto poly = CRCPoly!(12).normal(0x80F);
auto crc = new CRC!(12, ushort, false, false)(poly, 0, 0);
crc.update("abcdef");
assert(crc.finish() == 0x6C7);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC-12 reflected\n");
try {
auto poly = CRCPoly!(12).normal(0x80F);
auto crc = new CRC!(12, ushort, true, true)(poly, 0, 0);
crc.update("abcdef");
assert(crc.finish() == 0xFE6);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
}
int main()
{
return 0;
}
Tiskni
Sdílej: