Byla vydána (𝕏) zářijová aktualizace aneb nová verze 1.105 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.105 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Ve Firefoxu bude lepší správa profilů (oddělené nastavení domovské stránky, nastavení lišt, instalace rozšíření, uložení hesla, přidání záložky atd.). Nový grafický správce profilů bude postupně zaváděn od 14.října.
Canonical vydal (email) Ubuntu 25.10 Questing Quokka. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do července 2026.
ClamAV (Wikipedie), tj. multiplatformní antivirový engine s otevřeným zdrojovým kódem pro detekci trojských koní, virů, malwaru a dalších škodlivých hrozeb, byl vydán ve verzi 1.5.0.
Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
// Most significant bit first (big-endian) // x^16+x^12+x^5+1 = (1) 0001 0000 0010 0001 = 0x1021 function crc(byte array string[1..len], int len) { rem := 0 // A popular variant complements rem here for i from 1 to len { rem := rem xor (string[i] leftShift (n-8)) // n = 16 in this example for j from 1 to 8 { // Assuming 8 bits per byte if rem and 0x8000 { // if leftmost (most significant) bit is set rem := (rem leftShift 1) xor 0x1021 } else { rem := rem leftShift 1 } rem := rem and 0xffff // Trim remainder to 16 bits } } // A popular variant complements rem here return rem }Je to CRC-16. Řekněme, že chcu počítat CRC-4, budu si předpočítávat tabulku, takže pro každý byte si spočítám element:
// pro každý 8b byte "nějakejByte" byte rem := 0 xor (nějakejByte leftShift (4-8)) for j from 1 to 8 { // if rem and 0x8 { rem := (rem leftShift 1) xor poly } else { rem := rem leftShift 1 } rem := rem and 0x7 } tabulka[nějakejByte] := remVyjde mi tam posun vlevo o -4 (4-8) ??? To se mi nezdá.
Řešení dotazu:
module jardik.checksum.crc; import jardik.inttypes; import std.traits; public struct CRCIntTraits(const size_t _CRC_BITS, _IntType = UIntFast!(_CRC_BITS)) { static const size_t CRC_BITS = _CRC_BITS; alias IntType = _IntType; static assert(isIntegral!(IntType), "Integral type required"); static assert(IntType.sizeof * 8 >= CRC_BITS, "Integral doesn't have enough bits"); static const IntType ZERO = 0; static const IntType ONE = 1; static const IntType CRC_HIBIT = ONE << (CRC_BITS-1); static if (CRC_BITS < IntType.sizeof * 8) { static const IntType CRC_MASK = ~cast(IntType)(~ZERO << CRC_BITS); static pure IntType crcMask(IntType val) { return val & CRC_MASK; } } else { static const IntType CRC_MASK = ~ZERO; static pure IntType crcMask(IntType val) { return val; } } } private pure IntType reflect(const size_t NUM_BITS, IntType) (IntType value) { alias IntTraits = CRCIntTraits!(NUM_BITS, IntType); IntType result = IntTraits.ZERO; for (size_t i = 0; i < NUM_BITS; ++i) { if (value & IntTraits.ONE) { result |= (IntTraits.ONE << (NUM_BITS - 1 - i)); } value >>= 1; } return result; } public struct CRCPoly(const size_t _CRC_BITS) { static const size_t CRC_BITS = _CRC_BITS; alias IntTraits = CRCIntTraits!(CRC_BITS); alias IntType = IntTraits.IntType; IntType normalValue; IntType reflectedValue; static CRCPoly fromData(U)(in U[] polyData) { IntType value = IntTraits.ZERO; foreach(n; polyData) { assert(n < CRC_BITS); value |= IntTraits.ONE << n; } return normal(value); } static CRCPoly normal(IntType value) { return CRCPoly(value, reflect!(CRC_BITS)(value)); } static CRCPoly reflected(IntType value) { return CRCPoly(reflect!(CRC_BITS)(value), value); } } unittest { import std.stdio; import core.exception; printf(">> Testing CRC poly generator\n"); // CRC-4-ITU try { immutable ubyte[] crc4polyData = [0,1]; const uint crc4polyCheck = 0x3U; const uint crc4polyReflectedCheck = 0xCU; auto crc4poly = CRCPoly!(4).fromData(crc4polyData).normalValue; auto crc4polyReflected = CRCPoly!(4).fromData(crc4polyData).reflectedValue; assert(crc4poly == crc4polyCheck); assert(crc4polyReflected == crc4polyReflectedCheck); printf(" ... CRC-4 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-4 poly failed.\n"); } // CRC-32 try { immutable ubyte[] crc32polyData = [0,1,2,4,5,7,8,10,11,12,16,22,23,26]; const uint crc32polyCheck = 0x04C11DB7U; const uint crc32polyReflectedCheck = 0xEDB88320U; auto crc32poly = CRCPoly!(32).fromData(crc32polyData).normalValue; auto crc32polyReflected = CRCPoly!(32).fromData(crc32polyData).reflectedValue; assert(crc32poly == crc32polyCheck); assert(crc32polyReflected == crc32polyReflectedCheck); printf(" ... CRC-32 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-32 poly failed.\n"); } // CRC-64-ECMA try { immutable ubyte[] crc64polyData = [ 0,1,4,7,9,10,12,13,17,19,21,22,23,24,27,29,31, 32,33,35,37,38,39,40,45,46,47,52,53,54,55,57,62 ]; const ulong crc64polyCheck = 0x42F0E1EBA9EA3693UL; const ulong crc64polyReflectedCheck = 0xC96C5795D7870F42UL; auto crc64poly = CRCPoly!(64).fromData(crc64polyData).normalValue; auto crc64polyReflected = CRCPoly!(64).fromData(crc64polyData).reflectedValue; assert(crc64poly == crc64polyCheck); assert(crc64polyReflected == crc64polyReflectedCheck); printf(" ... CRC-64 poly passed.\n"); } catch (AssertError) { printf(" ... CRC-64 poly failed.\n"); } } public class CRCTableGen(// number of CRC bits const size_t _CRC_BITS, // integer type backing the CRC table entry _IntType = UIntFast!(_CRC_BITS), // whether to reflect CRC table entries const bool REFLECT = false) { enum : size_t { CRC_BITS = _CRC_BITS } alias IntType = _IntType; alias IntTraits = CRCIntTraits!(CRC_BITS, IntType); alias FastIntType = UIntFast!(CRC_BITS); alias FastIntTraits = CRCIntTraits!(CRC_BITS, FastIntType); public static pure IntType[] generate(in CRCPoly!CRC_BITS poly) { IntType[] table = new IntType[256]; generateImpl(table, poly); return table; } public static pure IntType[] generate(IntType[] reuseTable, in CRCPoly!CRC_BITS poly) { IntType[] table = reuseTable.length < 256 ? new IntType[256] : reuseTable; generateImpl(table, poly); return table; } static if (!REFLECT) { private static pure void generateImpl(IntType[] table, in CRCPoly!CRC_BITS poly) { FastIntType remainder; FastIntType polyVal = poly.normalValue; for (size_t divident = 0; divident < 256; ++divident) { remainder = FastIntTraits.ZERO; for (size_t mask = 0x80; mask != 0; mask >>= 1) { if (divident & mask) remainder ^= FastIntTraits.CRC_HIBIT; if (remainder & FastIntTraits.CRC_HIBIT) { remainder <<= 1; remainder ^= polyVal; } else { remainder <<= 1; } } table[divident] = cast(IntType)FastIntTraits.crcMask(remainder); } } } else { private static pure void generateImpl(IntType[] table, in CRCPoly!CRC_BITS poly) { FastIntType rem; FastIntType polyVal = poly.reflectedValue; size_t k; for (size_t divident = 0; divident < 256; ++divident) { rem = cast(FastIntType)divident; for (k = 0; k < 8; ++k) rem = rem & 1 ? polyVal ^ (rem >> 1) : (rem >> 1); table[divident] = cast(IntType)FastIntTraits.crcMask(rem); } } } } unittest { import std.stdio; import core.exception; const auto poly = CRCPoly!(32)(0x04C11DB7U, 0xEDB88320U); uint[] crcTable = CRCTableGen!(32, uint, false).generate(poly); uint[] crcTableReflected = CRCTableGen!(32, uint, true).generate(poly); File f = File("crc32test.txt", "w"); f.writeln(" NORMAL | REFLECT "); f.writeln("---------|----------"); for (size_t i = 0; i < 256; ++i) { f.writefln("%08X | %08X", crcTable[i], crcTableReflected[i]); } auto crc4poly = CRCPoly!(4).normal(0b1011U); ubyte[] crc4table = CRCTableGen!(4, ubyte, false).generate(crc4poly); f = File("crc4test.txt", "w"); size_t i; for (i = 0; i < 256-8; i+=8) { f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X,", crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3], crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]); } f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X", crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3], crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]); } public class CRC(const size_t CRC_BITS, _TableIntType = FastInt!(CRC_BITS), const bool _REFLECT_DATA = false, const bool _REFLECT_REM = _REFLECT_DATA) { alias IntTraits = CRCIntTraits!(CRC_BITS); alias IntType = IntTraits.IntType; alias TableIntType = _TableIntType; alias TableGen = CRCTableGen!(CRC_BITS, TableIntType, _REFLECT_DATA); alias PolyType = CRCPoly!(CRC_BITS); const(TableIntType)[] m_table; IntType m_init; IntType m_xor; IntType m_val; public this(in PolyType poly, IntType initVal, IntType xorVal) { this(TableGen.generate(poly), initVal, xorVal); } public this(const(TableIntType)[] table, IntType initVal, IntType xorVal) { m_table = table; m_init = initVal; m_xor = xorVal; m_val = m_init; } public void reset() { m_val = m_init; } public void update(string str) { update(cast(const(ubyte[]))str); } static if (_REFLECT_DATA) { public void update(in ubyte[] buf) { size_t tableIndex; foreach (IntType b; buf) { tableIndex = cast(size_t)((m_val ^ b) & cast(IntType)0xFFU); m_val = cast(IntType)(m_table[tableIndex] ^ (m_val >> 8)); } } } else { public void update(in ubyte[] buf) { size_t tableIndex; foreach (IntType b; buf) { static if (CRC_BITS < 8) tableIndex = cast(size_t)(b ^ (m_val << (8 - CRC_BITS))); else tableIndex = cast(size_t)(b ^ (m_val >> (CRC_BITS - 8))); m_val = IntTraits.crcMask(cast(IntType)(m_table[tableIndex] ^ (m_val << 8))); } } } public IntType peek() const { static if (_REFLECT_REM == _REFLECT_DATA) { return IntTraits.crcMask(m_val ^ m_xor); } else { return IntTraits.crcMask(reflect!(CRC_BITS, IntType)(m_val) ^ m_xor); } } public IntType finish() { IntType crcVal = peek(); reset(); return crcVal; } } public class CRC32 : CRC!(32, uint, true, true) { public this() { //super(PolyType.normal(0x04C11DB7U), 0xFFFFFFFFU, 0xFFFFFFFFU); super(PolyType.reflected(0xEDB88320U), 0xFFFFFFFFU, 0xFFFFFFFFU); } public this(const(uint)[] table) { super(table, 0xFFFFFFFFU, 0xFFFFFFFFU); } } unittest { import std.stdio; import core.exception; printf(">> Testing CRC32\n"); try { CRC32 crc32 = new CRC32(); crc32.update("abc"); ulong crc = crc32.finish(); assert(crc == 0x352441C2U); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC4 poly = 0xB\n"); try { auto crc4 = new CRC!(4, ushort, false, false)(CRCPoly!(4).normal(0xB), 0, 0); crc4.update("abcdef"); assert(crc4.finish() == 0x2); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC4 poly = 0xB, reflected\n"); try { auto crc4 = new CRC!(4, ushort, true, true)(CRCPoly!(4).normal(0xB), 0, 0); crc4.update("abcdef"); assert(crc4.finish() == 0x8); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC16-CCITT\n"); try { auto poly = CRCPoly!(16).normal(0x1021); auto crc16ccitt = new CRC!(16, ushort, false, false)(poly, 0xffff, 0); crc16ccitt.update("abcdef"); assert(crc16ccitt.finish() == 0x34ED); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC16\n"); try { auto poly = CRCPoly!(16).normal(0x8005); auto crc16 = new CRC!(16, ushort, true, true)(poly, 0, 0); crc16.update("abcdef"); assert(crc16.finish() == 0x5805); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC-12\n"); try { auto poly = CRCPoly!(12).normal(0x80F); auto crc = new CRC!(12, ushort, false, false)(poly, 0, 0); crc.update("abcdef"); assert(crc.finish() == 0x6C7); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } printf(">> Testing CRC-12 reflected\n"); try { auto poly = CRCPoly!(12).normal(0x80F); auto crc = new CRC!(12, ushort, true, true)(poly, 0, 0); crc.update("abcdef"); assert(crc.finish() == 0xFE6); printf(" ... passed.\n"); } catch (AssertError) { printf(" ... failed.\n"); } } int main() { return 0; }
Tiskni
Sdílej: