Github publikoval Octoverse 2025 (YouTube), tj. každoroční přehled o stavu open source a veřejných softwarových projektů na GitHubu. Každou sekundu se připojil více než jeden nový vývojář. Nejpoužívanějším programovacím jazykem se stal TypeScript.
Kit je nový maskot webového prohlížeče Firefox.
Mastodon (Wikipedie) - sociální síť, která není na prodej - byl vydán ve verzi 4.5. Přehled novinek s náhledy v oznámení na blogu.
Německo zvažuje, že zaplatí místním telekomunikačním operátorům včetně Deutsche Telekom, aby nahradili zařízení od čínské firmy Huawei. Náklady na výměnu by mohly přesáhnout dvě miliardy eur (bezmála 49 miliard Kč). Jeden scénář počítá s tím, že vláda na tento záměr použije prostředky určené na obranu či infrastrukturu.
Po dvaceti letech skončil leader japonské SUMO (SUpport.MOzilla.org) komunity Marsf. Důvodem bylo nasazení sumobota, který nedodržuje nastavené postupy a hrubě zasahuje do překladů i archivů. Marsf zároveň zakázal použití svých příspěvků a dat k učení sumobota a AI a požádal o vyřazení svých dat ze všech učebních dat.
Úřad pro ochranu hospodářské soutěže zahajuje sektorové šetření v oblasti mobilních telekomunikačních služeb poskytovaných domácnostem v České republice. Z poznatků získaných na základě prvotní analýzy provedené ve spolupráci s Českým telekomunikačním úřadem (ČTÚ) ÚOHS zjistil, že vzájemné vztahy mezi operátory je zapotřebí detailněji prověřit kvůli možné nefunkčnosti některých aspektů konkurence na trzích, na nichž roste tržní podíl klíčových hráčů a naopak klesá význam nezávislých virtuálních operátorů.
Různé audity bezpečnostních systémů pařížského muzea Louvre odhalily závažné problémy v oblasti kybernetické bezpečnosti a tyto problémy přetrvávaly déle než deset let. Jeden z těchto auditů, který v roce 2014 provedla francouzská národní agentura pro kybernetickou bezpečnost, například ukázal, že heslo do kamerového systému muzea bylo „Louvre“. 😀
Z upstreamu GNOME Mutter byl zcela odstraněn backend X11. GNOME 50 tedy poběží už pouze nad Waylandem. Aplikace pro X11 budou využívat XWayland.
Byl publikován plán na odstranění XSLT z webových prohlížečů Chrome a Chromium. S odstraněním XSLT souhlasí také vývojáři Firefoxu a WebKit. Důvodem jsou bezpečnostní rizika a klesající využití v moderním webovém vývoji.
Desktopové prostředí LXQt (Lightweight Qt Desktop Environment, Wikipedie) vzniklé sloučením projektů Razor-qt a LXDE bylo vydáno ve verzi 2.3.0. Přehled novinek v poznámkách k vydání.
// Most significant bit first (big-endian)
// x^16+x^12+x^5+1 = (1) 0001 0000 0010 0001 = 0x1021
function crc(byte array string[1..len], int len) {
rem := 0
// A popular variant complements rem here
for i from 1 to len {
rem := rem xor (string[i] leftShift (n-8)) // n = 16 in this example
for j from 1 to 8 { // Assuming 8 bits per byte
if rem and 0x8000 { // if leftmost (most significant) bit is set
rem := (rem leftShift 1) xor 0x1021
} else {
rem := rem leftShift 1
}
rem := rem and 0xffff // Trim remainder to 16 bits
}
}
// A popular variant complements rem here
return rem
}
Je to CRC-16. Řekněme, že chcu počítat CRC-4, budu si předpočítávat tabulku, takže pro každý byte si spočítám element:
// pro každý 8b byte "nějakejByte"
byte rem := 0 xor (nějakejByte leftShift (4-8))
for j from 1 to 8 { //
if rem and 0x8 {
rem := (rem leftShift 1) xor poly
}
else {
rem := rem leftShift 1
}
rem := rem and 0x7
}
tabulka[nějakejByte] := rem
Vyjde mi tam posun vlevo o -4 (4-8) ??? To se mi nezdá.
Řešení dotazu:
module jardik.checksum.crc;
import jardik.inttypes;
import std.traits;
public struct CRCIntTraits(const size_t _CRC_BITS,
_IntType = UIntFast!(_CRC_BITS))
{
static const size_t CRC_BITS = _CRC_BITS;
alias IntType = _IntType;
static assert(isIntegral!(IntType), "Integral type required");
static assert(IntType.sizeof * 8 >= CRC_BITS, "Integral doesn't have enough bits");
static const IntType ZERO = 0;
static const IntType ONE = 1;
static const IntType CRC_HIBIT = ONE << (CRC_BITS-1);
static if (CRC_BITS < IntType.sizeof * 8)
{
static const IntType CRC_MASK = ~cast(IntType)(~ZERO << CRC_BITS);
static pure IntType crcMask(IntType val) {
return val & CRC_MASK;
}
}
else {
static const IntType CRC_MASK = ~ZERO;
static pure IntType crcMask(IntType val) {
return val;
}
}
}
private pure IntType reflect(const size_t NUM_BITS,
IntType)
(IntType value)
{
alias IntTraits = CRCIntTraits!(NUM_BITS, IntType);
IntType result = IntTraits.ZERO;
for (size_t i = 0; i < NUM_BITS; ++i)
{
if (value & IntTraits.ONE) {
result |= (IntTraits.ONE << (NUM_BITS - 1 - i));
}
value >>= 1;
}
return result;
}
public struct CRCPoly(const size_t _CRC_BITS)
{
static const size_t CRC_BITS = _CRC_BITS;
alias IntTraits = CRCIntTraits!(CRC_BITS);
alias IntType = IntTraits.IntType;
IntType normalValue;
IntType reflectedValue;
static CRCPoly fromData(U)(in U[] polyData)
{
IntType value = IntTraits.ZERO;
foreach(n; polyData)
{
assert(n < CRC_BITS);
value |= IntTraits.ONE << n;
}
return normal(value);
}
static CRCPoly normal(IntType value) {
return CRCPoly(value, reflect!(CRC_BITS)(value));
}
static CRCPoly reflected(IntType value) {
return CRCPoly(reflect!(CRC_BITS)(value), value);
}
}
unittest
{
import std.stdio;
import core.exception;
printf(">> Testing CRC poly generator\n");
// CRC-4-ITU
try {
immutable ubyte[] crc4polyData = [0,1];
const uint crc4polyCheck = 0x3U;
const uint crc4polyReflectedCheck = 0xCU;
auto crc4poly = CRCPoly!(4).fromData(crc4polyData).normalValue;
auto crc4polyReflected = CRCPoly!(4).fromData(crc4polyData).reflectedValue;
assert(crc4poly == crc4polyCheck);
assert(crc4polyReflected == crc4polyReflectedCheck);
printf(" ... CRC-4 poly passed.\n");
}
catch (AssertError) {
printf(" ... CRC-4 poly failed.\n");
}
// CRC-32
try {
immutable ubyte[] crc32polyData = [0,1,2,4,5,7,8,10,11,12,16,22,23,26];
const uint crc32polyCheck = 0x04C11DB7U;
const uint crc32polyReflectedCheck = 0xEDB88320U;
auto crc32poly = CRCPoly!(32).fromData(crc32polyData).normalValue;
auto crc32polyReflected = CRCPoly!(32).fromData(crc32polyData).reflectedValue;
assert(crc32poly == crc32polyCheck);
assert(crc32polyReflected == crc32polyReflectedCheck);
printf(" ... CRC-32 poly passed.\n");
}
catch (AssertError) {
printf(" ... CRC-32 poly failed.\n");
}
// CRC-64-ECMA
try {
immutable ubyte[] crc64polyData = [
0,1,4,7,9,10,12,13,17,19,21,22,23,24,27,29,31,
32,33,35,37,38,39,40,45,46,47,52,53,54,55,57,62
];
const ulong crc64polyCheck = 0x42F0E1EBA9EA3693UL;
const ulong crc64polyReflectedCheck = 0xC96C5795D7870F42UL;
auto crc64poly = CRCPoly!(64).fromData(crc64polyData).normalValue;
auto crc64polyReflected = CRCPoly!(64).fromData(crc64polyData).reflectedValue;
assert(crc64poly == crc64polyCheck);
assert(crc64polyReflected == crc64polyReflectedCheck);
printf(" ... CRC-64 poly passed.\n");
}
catch (AssertError) {
printf(" ... CRC-64 poly failed.\n");
}
}
public class CRCTableGen(// number of CRC bits
const size_t _CRC_BITS,
// integer type backing the CRC table entry
_IntType = UIntFast!(_CRC_BITS),
// whether to reflect CRC table entries
const bool REFLECT = false)
{
enum : size_t { CRC_BITS = _CRC_BITS }
alias IntType = _IntType;
alias IntTraits = CRCIntTraits!(CRC_BITS, IntType);
alias FastIntType = UIntFast!(CRC_BITS);
alias FastIntTraits = CRCIntTraits!(CRC_BITS, FastIntType);
public static pure IntType[] generate(in CRCPoly!CRC_BITS poly)
{
IntType[] table = new IntType[256];
generateImpl(table, poly);
return table;
}
public static pure IntType[] generate(IntType[] reuseTable,
in CRCPoly!CRC_BITS poly)
{
IntType[] table = reuseTable.length < 256 ? new IntType[256] : reuseTable;
generateImpl(table, poly);
return table;
}
static if (!REFLECT)
{
private static pure void generateImpl(IntType[] table,
in CRCPoly!CRC_BITS poly)
{
FastIntType remainder;
FastIntType polyVal = poly.normalValue;
for (size_t divident = 0; divident < 256; ++divident)
{
remainder = FastIntTraits.ZERO;
for (size_t mask = 0x80; mask != 0; mask >>= 1)
{
if (divident & mask)
remainder ^= FastIntTraits.CRC_HIBIT;
if (remainder & FastIntTraits.CRC_HIBIT) {
remainder <<= 1;
remainder ^= polyVal;
}
else {
remainder <<= 1;
}
}
table[divident] = cast(IntType)FastIntTraits.crcMask(remainder);
}
}
}
else
{
private static pure void generateImpl(IntType[] table,
in CRCPoly!CRC_BITS poly)
{
FastIntType rem;
FastIntType polyVal = poly.reflectedValue;
size_t k;
for (size_t divident = 0; divident < 256; ++divident)
{
rem = cast(FastIntType)divident;
for (k = 0; k < 8; ++k)
rem = rem & 1 ? polyVal ^ (rem >> 1) : (rem >> 1);
table[divident] = cast(IntType)FastIntTraits.crcMask(rem);
}
}
}
}
unittest
{
import std.stdio;
import core.exception;
const auto poly = CRCPoly!(32)(0x04C11DB7U, 0xEDB88320U);
uint[] crcTable = CRCTableGen!(32, uint, false).generate(poly);
uint[] crcTableReflected = CRCTableGen!(32, uint, true).generate(poly);
File f = File("crc32test.txt", "w");
f.writeln(" NORMAL | REFLECT ");
f.writeln("---------|----------");
for (size_t i = 0; i < 256; ++i)
{
f.writefln("%08X | %08X", crcTable[i],
crcTableReflected[i]);
}
auto crc4poly = CRCPoly!(4).normal(0b1011U);
ubyte[] crc4table = CRCTableGen!(4, ubyte, false).generate(crc4poly);
f = File("crc4test.txt", "w");
size_t i;
for (i = 0; i < 256-8; i+=8)
{
f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X,",
crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3],
crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]);
}
f.writefln("0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X, 0x%02X",
crc4table[i], crc4table[i+1], crc4table[i+2], crc4table[i+3],
crc4table[i+4], crc4table[i+5], crc4table[i+6], crc4table[i+7]);
}
public class CRC(const size_t CRC_BITS,
_TableIntType = FastInt!(CRC_BITS),
const bool _REFLECT_DATA = false,
const bool _REFLECT_REM = _REFLECT_DATA)
{
alias IntTraits = CRCIntTraits!(CRC_BITS);
alias IntType = IntTraits.IntType;
alias TableIntType = _TableIntType;
alias TableGen = CRCTableGen!(CRC_BITS, TableIntType, _REFLECT_DATA);
alias PolyType = CRCPoly!(CRC_BITS);
const(TableIntType)[] m_table;
IntType m_init;
IntType m_xor;
IntType m_val;
public this(in PolyType poly, IntType initVal, IntType xorVal)
{
this(TableGen.generate(poly), initVal, xorVal);
}
public this(const(TableIntType)[] table, IntType initVal, IntType xorVal)
{
m_table = table;
m_init = initVal;
m_xor = xorVal;
m_val = m_init;
}
public void reset()
{
m_val = m_init;
}
public void update(string str)
{
update(cast(const(ubyte[]))str);
}
static if (_REFLECT_DATA)
{
public void update(in ubyte[] buf)
{
size_t tableIndex;
foreach (IntType b; buf)
{
tableIndex = cast(size_t)((m_val ^ b) & cast(IntType)0xFFU);
m_val = cast(IntType)(m_table[tableIndex] ^ (m_val >> 8));
}
}
}
else
{
public void update(in ubyte[] buf)
{
size_t tableIndex;
foreach (IntType b; buf)
{
static if (CRC_BITS < 8)
tableIndex = cast(size_t)(b ^ (m_val << (8 - CRC_BITS)));
else
tableIndex = cast(size_t)(b ^ (m_val >> (CRC_BITS - 8)));
m_val = IntTraits.crcMask(cast(IntType)(m_table[tableIndex] ^ (m_val << 8)));
}
}
}
public IntType peek() const
{
static if (_REFLECT_REM == _REFLECT_DATA) {
return IntTraits.crcMask(m_val ^ m_xor);
}
else {
return IntTraits.crcMask(reflect!(CRC_BITS, IntType)(m_val) ^ m_xor);
}
}
public IntType finish()
{
IntType crcVal = peek();
reset();
return crcVal;
}
}
public class CRC32 : CRC!(32, uint, true, true)
{
public this() {
//super(PolyType.normal(0x04C11DB7U), 0xFFFFFFFFU, 0xFFFFFFFFU);
super(PolyType.reflected(0xEDB88320U), 0xFFFFFFFFU, 0xFFFFFFFFU);
}
public this(const(uint)[] table) {
super(table, 0xFFFFFFFFU, 0xFFFFFFFFU);
}
}
unittest
{
import std.stdio;
import core.exception;
printf(">> Testing CRC32\n");
try {
CRC32 crc32 = new CRC32();
crc32.update("abc");
ulong crc = crc32.finish();
assert(crc == 0x352441C2U);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC4 poly = 0xB\n");
try {
auto crc4 = new CRC!(4, ushort, false, false)(CRCPoly!(4).normal(0xB), 0, 0);
crc4.update("abcdef");
assert(crc4.finish() == 0x2);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC4 poly = 0xB, reflected\n");
try {
auto crc4 = new CRC!(4, ushort, true, true)(CRCPoly!(4).normal(0xB), 0, 0);
crc4.update("abcdef");
assert(crc4.finish() == 0x8);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC16-CCITT\n");
try {
auto poly = CRCPoly!(16).normal(0x1021);
auto crc16ccitt = new CRC!(16, ushort, false, false)(poly, 0xffff, 0);
crc16ccitt.update("abcdef");
assert(crc16ccitt.finish() == 0x34ED);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC16\n");
try {
auto poly = CRCPoly!(16).normal(0x8005);
auto crc16 = new CRC!(16, ushort, true, true)(poly, 0, 0);
crc16.update("abcdef");
assert(crc16.finish() == 0x5805);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC-12\n");
try {
auto poly = CRCPoly!(12).normal(0x80F);
auto crc = new CRC!(12, ushort, false, false)(poly, 0, 0);
crc.update("abcdef");
assert(crc.finish() == 0x6C7);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
printf(">> Testing CRC-12 reflected\n");
try {
auto poly = CRCPoly!(12).normal(0x80F);
auto crc = new CRC!(12, ushort, true, true)(poly, 0, 0);
crc.update("abcdef");
assert(crc.finish() == 0xFE6);
printf(" ... passed.\n");
}
catch (AssertError) {
printf(" ... failed.\n");
}
}
int main()
{
return 0;
}
Tiskni
Sdílej: