Byla vydána nová verze 1.26 programovacího jazyka Go (Wikipedie). Přehled novinek v poznámkách k vydání.
CrossOver, komerční produkt založený na Wine, byl vydán ve verzi 26. Přehled novinek v ChangeLogu. CrossOver 26 vychází z Wine 11.0, D3DMetal 3.0, DXMT 0.72, Wine Mono 10.4.1 a vkd3d 1.18. Do 17. února lze koupit CrossOver+ se slevou 26 %.
KiCad je nově k dispozici také jako balíček ve formátu AppImage. Stačí jej stáhnout, nastavit právo na spouštění a spustit [Mastodon, 𝕏].
Šenčenská firma Seeed Studio představila projekt levného robotického ramena reBot Arm B601, primárně coby pomůcky pro studenty a výzkumníky. Paže má 6 stupňů volnosti, dosah 650 mm a nosnost 1,5 kilogramu, podporované platformy mají být ROS1, ROS2, LeRobot, Pinocchio a Isaac Sim, krom toho bude k dispozici vlastní SDK napsané v Pythonu. Kompletní seznam součástek, videonávody a nejspíš i cena budou zveřejněny až koncem tohoto měsíce.
… více »Byla vydána nová verze 36.0, tj. první stabilní verze nové řady 36, svobodného multimediálního centra MythTV (Wikipedie). Přehled novinek a vylepšení v poznámkách k vydání.
Byl vydán LineageOS 23.2 (Mastodon). LineageOS (Wikipedie) je svobodný operační systém pro chytré telefony, tablety a set-top boxy založený na Androidu. Jedná se o nástupce CyanogenModu.
Od března budou mít uživatelé Discordu bez ověření věku pouze minimální práva vhodná pro teenagery.
Evropská komise (EK) předběžně shledala čínskou sociální síť pro sdílení krátkých videí TikTok návykovým designem v rozporu s unijním nařízením o digitálních službách (DSA). Komise, která je exekutivním orgánem Evropské unie a má rozsáhlé pravomoci, o tom informovala v tiskovém sdělení. TikTok v reakci uvedl, že EK o platformě vykreslila podle něj zcela nepravdivý obraz, a proto se bude bránit.… více »
Offpunk byl vydán ve verzi 3.0. Jedná se o webový prohlížeč běžící v terminálu a podporující také protokoly Gemini, Gopher a RSS. Přibyl nástroj xkcdpunk pro zobrazení XKCD v terminálu.
Promethee je projekt, který implementuje UEFI (Unified Extensible Firmware Interface) bindingy pro JavaScript. Z bootovacího média načítá a spouští soubor 'script.js', který může používat UEFI služby. Cílem je vytvořit zavaděč, který lze přizpůsobit pomocí HTML/CSS/JS. Repozitář se zdrojovými kódy je na Codebergu.
Class Data
{
public:
...
std::vector<u8> readU8(Info i);
std::vector<float> readFloat(Info i);
std::vector<std::vector<float>> readFloatVector(Info i);
...
}
Ve třídě Info je hromada informací podle kterých ty data získávám + jejich datový typ uložený jako enum class
enum class DatovyTyp : u8 {U8,Float,FloatVector,...}
class Info
{
public:
...
std::string jmeno;
DatovyTyp typ;
...
}
Celé použití je dost nešikovné, protože když chci získat všechny data a pak je zase dál použít, musím mít IF pro každý datový typ:
(navazující metody už jsou teplate nebo přetížené, takže umí pracovat se všemi datovými typy, které potřebuju)
Data d(...);
for(...)
{
Info i(...);
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.readFloat(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.readU8(i),...);
}
}
Použití template ve smyslu:
template <typename T>
T read(Info i)
{
...
mě sice sjednotí všechny readXY do jedné šablony, ale pořád budu muset mít IF pro každý datový typ
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.read<float>(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.read<u8>(i),...);
}
Chtěl bych idálně mít nějaký kouzelný template, který vrací datový typ podle toho enum class DatovyTyp - což pokud vím nejde.
Takže se ptám, jestli existuje nějaká možnost jak uložit informaci o datovém typu tak, abych to potom mohl použít k určení návratového datového typu v template? Zatím jsem nic nenašel a co se pamatuju, tak tohle template neumožňují - existuje nějaká možnost jak to obejít?
Nebo jak to celé upravit nějak jinak, abych se vyhnul IF pro každý datový typ?
Díky.
Data získat. To se čistě templaty vyřešit nedá, protože templaty v C++ se řeší pouze při překladu. Nějaké runtimové logice s větvením se tedy nevyhneš. Dá se to ale částečně zjednodušit tím, že logiku, která za běhu zjistí požadovaný datový typ a podle toho zavolá příslušnou obsluhu přesuneš do jedné flexibilní funkce. Nějaký nástin, jak na to můžeš najít třeba tady: https://pastebin.com/XUvcSJUr. Vtip je v tom, že to, co se předává dispatcheru jako templatový parameter P lze naimplemetovat libovolně, zatímco dispatcher bude vždy jen jeden.
Dalo by se to samozřejmě rozšířit i pro případy, že by měl dispatcher něco vracet apod. ale princip by byl stejný...
read():
https://pastebin.com/5GuZk4m5
P, která s budou používat nejčastěji můžeš implementovat ty jako autor rozhraní s tím, že coder monkey prostě zavolá nějaký wrapper okolo dispatcheru a nebude řešit, co se vevnitř děje. std::variant v kódu není nejspíš proto, že je to věcička až z C++17 a starší překladače to nezbaští.
std::get<float>(variant) ... jestli mi teda zase něco neuniklo
std::variant? Tam se to řeší přes visitor patern.
Data data vždy jen jednoho typu nebo zda je možné zavolat d.readFloat() a d.readU8() na jedné instanci té třídy. To by se variantem myslím řešit nedalo. Aspoň trochu flexibilní logika, jak řešit ten druhý případ by mohla vypadat třeba takto:
#include <iostream>
#include <vector>
enum class TypeID {
String,
Float,
Integer
};
template <TypeID>
struct TypeIdentifier {
};
template <>
struct TypeIdentifier<TypeID::String> {
typedef std::string type;
};
template <>
struct TypeIdentifier<TypeID::Float> {
typedef float type;
};
template <>
struct TypeIdentifier<TypeID::Integer> {
typedef int32_t type;
};
struct Data {
template <typename T>
std::vector<T> read();
};
template <>
std::vector<std::string> Data::read()
{
return std::vector<std::string>{ "Zero", "One", "Two" };
}
template <>
std::vector<float> Data::read()
{
return std::vector<float>{ 0.1, 0.2, 0.3 };
}
template <>
std::vector<int32_t> Data::read()
{
return std::vector<int32_t>{ 10, 20, 30 };
}
template <typename T>
void print(const T &t)
{
for (auto && i : t)
std::cout << i << " ";
std::cout << "\n";
}
template <typename T>
void printReverse(const T &t)
{
for (auto it = t.rbegin(); it != t.rend(); it++)
std::cout << *it << " ";
std::cout << "\n";
}
template <template <typename> class P, typename S, typename... Args>
void dispatcher(const TypeID id, S &s, Args... args)
{
switch (id) {
case TypeID::String:
P<TypeIdentifier<TypeID::String>::type>::call(s, std::forward<Args>(args)...); break;
case TypeID::Float:
P<TypeIdentifier<TypeID::Float>::type>::call(s, std::forward<Args>(args)...); break;
case TypeID::Integer:
P<TypeIdentifier<TypeID::Integer>::type>::call(s, std::forward<Args>(args)...); break;
}
}
template <typename T>
struct Proc {
static void call(Data &d)
{
auto v = d.read<T>();
print(v);
}
};
template <>
struct Proc<int32_t> {
static void call(Data &d)
{
std::cout << "Specialization for int32_t\n";
auto v = d.read<int32_t>();
print(v);
}
};
template <typename T>
struct ProcTwo {
template <typename... Args>
static void call(Data &d, Args ...)
{
auto v = d.read<T>();
printReverse(v);
}
};
template <>
struct ProcTwo<float> {
static void call(Data &d, int i)
{
std::cout << "Specialization for float: " << i << "\n";
auto v = d.read<float>();
printReverse(v);
}
template <typename... Args>
static void call(Data &, Args...)
{
throw std::runtime_error("Function called with invalid parameters");
}
};
int main()
{
Data d;
dispatcher<Proc>(TypeID::String, d);
dispatcher<Proc>(TypeID::Float, d);
dispatcher<Proc>(TypeID::Integer, d);
dispatcher<ProcTwo>(TypeID::String, d);
dispatcher<ProcTwo>(TypeID::Float, d, 66);
//dispatcher<ProcTwo>(TypeID::Float, d); /* Throws at runtime */
dispatcher<ProcTwo>(TypeID::Integer, d);
return 0;
}
template<int N, class Head, class... Tail>
struct Dispatch {
static void dispatch(const Info& i, const Data& d) {
if (i.typ == N)
perform<Head>(i, d);
else
Dispatch<N+1, Tail...>::dispatch(i, d);
}
};
Tiskni
Sdílej: