Digg (Wikipedie), "místo, kde můžete sdílet a objevovat to nejlepší z internetu – a nejen to", je zpět. Ve veřejné betě.
Po .deb balíčcích Mozilla nově poskytuje také .rpm balíčky Firefoxu Nightly.
Vývojové prostředí IntelliJ IDEA slaví 25. narozeniny (YouTube).
Vedení společnosti NVIDIA údajně povolilo použití milionů knih ze známého 'warez' archivu Anna's Archive k výcviku umělé inteligence, ačkoliv vědělo, že archiv tyto knihy nezískal legální cestou. Žaloba, ve které se objevují i citace interních dokumentů společnosti NVIDIA, tvrdí, že NVIDIA přímo kontaktovala Anna's Archive a požadovala vysokorychlostní přístup k datům knihovny.
Grafický správce balíčků Myrlyn pro SUSE a openSUSE, původně YQPkg, dospěl do stabilní verze 1.0.0. Postaven je nad libzypp a Qt 6. Projekt začal na SUSE Hack Weeku 24.
Vývojáři se podařilo vytvořit patch pro Wine, díky kterému je možné na linuxovém stroji nainstalovat a spustit Adobe Photoshop (testováno s verzemi Photoshopu PS2021 a PS2025). Dalším patchem se podařilo umožnit dokonce instalaci téměř celého Adobe Creative Cloud Collection 2023, vyjma aplikací Adobe XD a Adobe Fresco. Patch řeší kompatibilitu s windowsovými subsystémy MSHTML - jádrem prohlížeče Internet exporer, a MSXML3 - parserem
… více »Hackeři zaútočili na portál veřejných zakázek a vyřadili ho z provozu. Systém, ve kterém musí být ze zákona sdíleny informace o veřejných zakázkách, se ministerstvo pro místní rozvoj (MMR) nyní pokouší co nejdříve zprovoznit. Úřad o tom informoval na svém webu a na sociálních sítích. Portál slouží pro sdílení informací mezi zadavateli a dodavateli veřejných zakázek.
Javascriptová knihovna jQuery (Wikipedie) oslavila 20. narozeniny, John Resig ji představil v lednu 2006 na newyorském BarCampu. Při této příležitosti byla vydána nová major verze 4.0.0.
Singularity je rootkit ve formě jaderného modulu (Linux Kernel Module), s otevřeným zdrojovým kódem dostupným pod licencí MIT. Tento rootkit je určený pro moderní linuxová jádra 6.x a poskytuje své 'komplexní skryté funkce' prostřednictvím hookingu systémových volání pomocí ftrace. Pro nadšence je k dispozici podrobnější popis rootkitu na blogu autora, případně v článku na LWN.net. Projekt je zamýšlen jako pomůcka pro bezpečnostní experty a výzkumníky, takže instalujte pouze na vlastní nebezpečí a raději pouze do vlastních strojů 😉.
Iconify je seznam a galerie kolekcí vektorových open-source ikon, ke stažení je přes 275000 ikon z více jak dvou set sad. Tento rovněž open-source projekt dává vývojářům k dispozici i API pro snadnou integraci svobodných ikon do jejich projektů.
Class Data
{
public:
...
std::vector<u8> readU8(Info i);
std::vector<float> readFloat(Info i);
std::vector<std::vector<float>> readFloatVector(Info i);
...
}
Ve třídě Info je hromada informací podle kterých ty data získávám + jejich datový typ uložený jako enum class
enum class DatovyTyp : u8 {U8,Float,FloatVector,...}
class Info
{
public:
...
std::string jmeno;
DatovyTyp typ;
...
}
Celé použití je dost nešikovné, protože když chci získat všechny data a pak je zase dál použít, musím mít IF pro každý datový typ:
(navazující metody už jsou teplate nebo přetížené, takže umí pracovat se všemi datovými typy, které potřebuju)
Data d(...);
for(...)
{
Info i(...);
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.readFloat(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.readU8(i),...);
}
}
Použití template ve smyslu:
template <typename T>
T read(Info i)
{
...
mě sice sjednotí všechny readXY do jedné šablony, ale pořád budu muset mít IF pro každý datový typ
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.read<float>(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.read<u8>(i),...);
}
Chtěl bych idálně mít nějaký kouzelný template, který vrací datový typ podle toho enum class DatovyTyp - což pokud vím nejde.
Takže se ptám, jestli existuje nějaká možnost jak uložit informaci o datovém typu tak, abych to potom mohl použít k určení návratového datového typu v template? Zatím jsem nic nenašel a co se pamatuju, tak tohle template neumožňují - existuje nějaká možnost jak to obejít?
Nebo jak to celé upravit nějak jinak, abych se vyhnul IF pro každý datový typ?
Díky.
Data získat. To se čistě templaty vyřešit nedá, protože templaty v C++ se řeší pouze při překladu. Nějaké runtimové logice s větvením se tedy nevyhneš. Dá se to ale částečně zjednodušit tím, že logiku, která za běhu zjistí požadovaný datový typ a podle toho zavolá příslušnou obsluhu přesuneš do jedné flexibilní funkce. Nějaký nástin, jak na to můžeš najít třeba tady: https://pastebin.com/XUvcSJUr. Vtip je v tom, že to, co se předává dispatcheru jako templatový parameter P lze naimplemetovat libovolně, zatímco dispatcher bude vždy jen jeden.
Dalo by se to samozřejmě rozšířit i pro případy, že by měl dispatcher něco vracet apod. ale princip by byl stejný...
read():
https://pastebin.com/5GuZk4m5
P, která s budou používat nejčastěji můžeš implementovat ty jako autor rozhraní s tím, že coder monkey prostě zavolá nějaký wrapper okolo dispatcheru a nebude řešit, co se vevnitř děje. std::variant v kódu není nejspíš proto, že je to věcička až z C++17 a starší překladače to nezbaští.
std::get<float>(variant) ... jestli mi teda zase něco neuniklo
std::variant? Tam se to řeší přes visitor patern.
Data data vždy jen jednoho typu nebo zda je možné zavolat d.readFloat() a d.readU8() na jedné instanci té třídy. To by se variantem myslím řešit nedalo. Aspoň trochu flexibilní logika, jak řešit ten druhý případ by mohla vypadat třeba takto:
#include <iostream>
#include <vector>
enum class TypeID {
String,
Float,
Integer
};
template <TypeID>
struct TypeIdentifier {
};
template <>
struct TypeIdentifier<TypeID::String> {
typedef std::string type;
};
template <>
struct TypeIdentifier<TypeID::Float> {
typedef float type;
};
template <>
struct TypeIdentifier<TypeID::Integer> {
typedef int32_t type;
};
struct Data {
template <typename T>
std::vector<T> read();
};
template <>
std::vector<std::string> Data::read()
{
return std::vector<std::string>{ "Zero", "One", "Two" };
}
template <>
std::vector<float> Data::read()
{
return std::vector<float>{ 0.1, 0.2, 0.3 };
}
template <>
std::vector<int32_t> Data::read()
{
return std::vector<int32_t>{ 10, 20, 30 };
}
template <typename T>
void print(const T &t)
{
for (auto && i : t)
std::cout << i << " ";
std::cout << "\n";
}
template <typename T>
void printReverse(const T &t)
{
for (auto it = t.rbegin(); it != t.rend(); it++)
std::cout << *it << " ";
std::cout << "\n";
}
template <template <typename> class P, typename S, typename... Args>
void dispatcher(const TypeID id, S &s, Args... args)
{
switch (id) {
case TypeID::String:
P<TypeIdentifier<TypeID::String>::type>::call(s, std::forward<Args>(args)...); break;
case TypeID::Float:
P<TypeIdentifier<TypeID::Float>::type>::call(s, std::forward<Args>(args)...); break;
case TypeID::Integer:
P<TypeIdentifier<TypeID::Integer>::type>::call(s, std::forward<Args>(args)...); break;
}
}
template <typename T>
struct Proc {
static void call(Data &d)
{
auto v = d.read<T>();
print(v);
}
};
template <>
struct Proc<int32_t> {
static void call(Data &d)
{
std::cout << "Specialization for int32_t\n";
auto v = d.read<int32_t>();
print(v);
}
};
template <typename T>
struct ProcTwo {
template <typename... Args>
static void call(Data &d, Args ...)
{
auto v = d.read<T>();
printReverse(v);
}
};
template <>
struct ProcTwo<float> {
static void call(Data &d, int i)
{
std::cout << "Specialization for float: " << i << "\n";
auto v = d.read<float>();
printReverse(v);
}
template <typename... Args>
static void call(Data &, Args...)
{
throw std::runtime_error("Function called with invalid parameters");
}
};
int main()
{
Data d;
dispatcher<Proc>(TypeID::String, d);
dispatcher<Proc>(TypeID::Float, d);
dispatcher<Proc>(TypeID::Integer, d);
dispatcher<ProcTwo>(TypeID::String, d);
dispatcher<ProcTwo>(TypeID::Float, d, 66);
//dispatcher<ProcTwo>(TypeID::Float, d); /* Throws at runtime */
dispatcher<ProcTwo>(TypeID::Integer, d);
return 0;
}
template<int N, class Head, class... Tail>
struct Dispatch {
static void dispatch(const Info& i, const Data& d) {
if (i.typ == N)
perform<Head>(i, d);
else
Dispatch<N+1, Tail...>::dispatch(i, d);
}
};
Tiskni
Sdílej: