V Brně na FIT VUT probíhá třídenní open source komunitní konference DevConf.CZ 2025. Vstup je zdarma, nutná je ale registrace. Na programu je celá řada zajímavých přednášek, lightning talků, meetupů a workshopů. Přednášky lze sledovat i online na YouTube kanálu konference. Aktuální dění lze sledovat na Matrixu, 𝕏 nebo Mastodonu.
Vyloučení technologií, které by mohly představovat bezpečnostní riziko pro stát, má umožnit zákon o kybernetické bezpečnosti, který včera Senát schválil spolu s novelami navazujících právních předpisů. Norma, kterou nyní dostane k podpisu prezident, počítá rovněž s prověřováním dodavatelů technologií pro stát. Normy mají nabýt účinnosti od třetího měsíce po jejich vyhlášení ve Sbírce zákonů.
Open source platforma Home Assistant (Demo, GitHub, Wikipedie) pro monitorování a řízení inteligentní domácnosti byla vydána v nové verzi 2025.6.
Po Red Hat Enterprise Linuxu a AlmaLinuxu byl v nové stabilní verzi 10.0 vydán také Rocky Linux. Přehled novinek v poznámkách k vydání.
Bylo vydáno Eclipse IDE 2025-06 aneb Eclipse 4.36. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
Americká filmová studia Walt Disney a Universal Pictures podala žalobu na provozovatele populárního generátoru obrázků pomocí umělé inteligence (AI) Midjourney. Zdůvodňují to údajným porušováním autorských práv. V žalobě podané u federálního soudu v Los Angeles označují firmu za „bezednou jámu plagiátorství“, neboť podle nich bez povolení bezostyšně kopíruje a šíří postavy z filmů jako Star Wars, Ledové království nebo Já, padouch, aniž by do nich investovala jediný cent.
Ultra Ethernet Consortium (UEC), jehož cílem je optimalizace a další vývoj Ethernetu s důrazem na rostoucí síťové požadavky AI a HPC, vydalo specifikaci Ultra Ethernet 1.0 (pdf, YouTube).
Francouzský prezident Emmanuel Macron chce zakázat přístup na sociální sítě pro děti do 15 let. Francie podle něj tento krok udělá sama do několika měsíců, i pokud se na něm neshodnou další státy Evropské unie. Reaguje tak na úterní vraždu vychovatelky, kterou ve východofrancouzském městě Nogent pobodal 14letý mladík. Jednotlivé sociální sítě podle něj mají možnost věk ověřit a vymáhat zákaz pomocí systémů na rozpoznávání tváří.
Byl aktualizován seznam 500 nejvýkonnějších superpočítačů na světě TOP500. Nejvýkonnějším superpočítačem zůstává El Capitan od HPE (Cray) s výkonem 1,742 exaFLOPS. Druhý Frontier má výkon 1,353 exaFLOPS. Třetí Aurora má výkon 1,012 exaFLOPS. Nejvýkonnější český počítač C24 klesl na 165 místo. Karolina, GPU partition klesla na 195. místo a Karolina, CPU partition na 421. místo. Další přehledy a statistiky na stránkách projektu.
Oficiálně byl vydán Android 16. Detaily na blogu a stránkách věnovaných vývojářům.
Class Data
{
public:
...
std::vector<u8> readU8(Info i);
std::vector<float> readFloat(Info i);
std::vector<std::vector<float>> readFloatVector(Info i);
...
}
Ve třídě Info je hromada informací podle kterých ty data získávám + jejich datový typ uložený jako enum class
enum class DatovyTyp : u8 {U8,Float,FloatVector,...}
class Info
{
public:
...
std::string jmeno;
DatovyTyp typ;
...
}
Celé použití je dost nešikovné, protože když chci získat všechny data a pak je zase dál použít, musím mít IF pro každý datový typ:
(navazující metody už jsou teplate nebo přetížené, takže umí pracovat se všemi datovými typy, které potřebuju)
Data d(...);
for(...)
{
Info i(...);
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.readFloat(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.readU8(i),...);
}
}
Použití template ve smyslu:
template <typename T>
T read(Info i)
{
...
mě sice sjednotí všechny readXY do jedné šablony, ale pořád budu muset mít IF pro každý datový typ
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.read<float>(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.read<u8>(i),...);
}
Chtěl bych idálně mít nějaký kouzelný template, který vrací datový typ podle toho enum class DatovyTyp
- což pokud vím nejde.
Takže se ptám, jestli existuje nějaká možnost jak uložit informaci o datovém typu tak, abych to potom mohl použít k určení návratového datového typu v template? Zatím jsem nic nenašel a co se pamatuju, tak tohle template neumožňují - existuje nějaká možnost jak to obejít?
Nebo jak to celé upravit nějak jinak, abych se vyhnul IF pro každý datový typ?
Díky.
Data
získat. To se čistě templaty vyřešit nedá, protože templaty v C++ se řeší pouze při překladu. Nějaké runtimové logice s větvením se tedy nevyhneš. Dá se to ale částečně zjednodušit tím, že logiku, která za běhu zjistí požadovaný datový typ a podle toho zavolá příslušnou obsluhu přesuneš do jedné flexibilní funkce. Nějaký nástin, jak na to můžeš najít třeba tady: https://pastebin.com/XUvcSJUr. Vtip je v tom, že to, co se předává dispatcheru jako templatový parameter P lze naimplemetovat libovolně, zatímco dispatcher bude vždy jen jeden.
Dalo by se to samozřejmě rozšířit i pro případy, že by měl dispatcher něco vracet apod. ale princip by byl stejný...
read()
:
https://pastebin.com/5GuZk4m5
P
, která s budou používat nejčastěji můžeš implementovat ty jako autor rozhraní s tím, že coder monkey prostě zavolá nějaký wrapper okolo dispatcher
u a nebude řešit, co se vevnitř děje. std::variant
v kódu není nejspíš proto, že je to věcička až z C++17 a starší překladače to nezbaští.
std::get<float>(variant)
... jestli mi teda zase něco neuniklo std::variant
? Tam se to řeší přes visitor patern.
Data
data vždy jen jednoho typu nebo zda je možné zavolat d.readFloat()
a d.readU8()
na jedné instanci té třídy. To by se variantem myslím řešit nedalo. Aspoň trochu flexibilní logika, jak řešit ten druhý případ by mohla vypadat třeba takto:
#include <iostream> #include <vector> enum class TypeID { String, Float, Integer }; template <TypeID> struct TypeIdentifier { }; template <> struct TypeIdentifier<TypeID::String> { typedef std::string type; }; template <> struct TypeIdentifier<TypeID::Float> { typedef float type; }; template <> struct TypeIdentifier<TypeID::Integer> { typedef int32_t type; }; struct Data { template <typename T> std::vector<T> read(); }; template <> std::vector<std::string> Data::read() { return std::vector<std::string>{ "Zero", "One", "Two" }; } template <> std::vector<float> Data::read() { return std::vector<float>{ 0.1, 0.2, 0.3 }; } template <> std::vector<int32_t> Data::read() { return std::vector<int32_t>{ 10, 20, 30 }; } template <typename T> void print(const T &t) { for (auto && i : t) std::cout << i << " "; std::cout << "\n"; } template <typename T> void printReverse(const T &t) { for (auto it = t.rbegin(); it != t.rend(); it++) std::cout << *it << " "; std::cout << "\n"; } template <template <typename> class P, typename S, typename... Args> void dispatcher(const TypeID id, S &s, Args... args) { switch (id) { case TypeID::String: P<TypeIdentifier<TypeID::String>::type>::call(s, std::forward<Args>(args)...); break; case TypeID::Float: P<TypeIdentifier<TypeID::Float>::type>::call(s, std::forward<Args>(args)...); break; case TypeID::Integer: P<TypeIdentifier<TypeID::Integer>::type>::call(s, std::forward<Args>(args)...); break; } } template <typename T> struct Proc { static void call(Data &d) { auto v = d.read<T>(); print(v); } }; template <> struct Proc<int32_t> { static void call(Data &d) { std::cout << "Specialization for int32_t\n"; auto v = d.read<int32_t>(); print(v); } }; template <typename T> struct ProcTwo { template <typename... Args> static void call(Data &d, Args ...) { auto v = d.read<T>(); printReverse(v); } }; template <> struct ProcTwo<float> { static void call(Data &d, int i) { std::cout << "Specialization for float: " << i << "\n"; auto v = d.read<float>(); printReverse(v); } template <typename... Args> static void call(Data &, Args...) { throw std::runtime_error("Function called with invalid parameters"); } }; int main() { Data d; dispatcher<Proc>(TypeID::String, d); dispatcher<Proc>(TypeID::Float, d); dispatcher<Proc>(TypeID::Integer, d); dispatcher<ProcTwo>(TypeID::String, d); dispatcher<ProcTwo>(TypeID::Float, d, 66); //dispatcher<ProcTwo>(TypeID::Float, d); /* Throws at runtime */ dispatcher<ProcTwo>(TypeID::Integer, d); return 0; }
template<int N, class Head, class... Tail> struct Dispatch { static void dispatch(const Info& i, const Data& d) { if (i.typ == N) perform<Head>(i, d); else Dispatch<N+1, Tail...>::dispatch(i, d); } };
Tiskni
Sdílej: