3D software Blender byl vydán ve verzi 4.5 s prodlouženou podporou. Podrobnosti v poznámkách k vydání. Videopředstavení na YouTube.
Open source webový aplikační framework Django slaví 20. narozeniny.
V Brestu dnes začala konference vývojářů a uživatelů linuxové distribuce Debian DebConf25. Na programu je řada zajímavých přednášek. Sledovat je lze online.
Před 30 lety, tj. 14. července 1995, se začala používat přípona .mp3 pro soubory s hudbou komprimovanou pomocí MPEG-2 Audio Layer 3.
Výroba 8bitových domácích počítačů Commodore 64 byla ukončena v dubnu 1994. Po více než 30 letech byl představen nový oficiální Commodore 64 Ultimate (YouTube). S deskou postavenou na FPGA. Ve 3 edicích v ceně od 299 dolarů a plánovaným dodáním v říjnu a listopadu letošního roku.
Společnost Hugging Face ve spolupráci se společností Pollen Robotics představila open source robota Reachy Mini (YouTube). Předobjednat lze lite verzi za 299 dolarů a wireless verzi s Raspberry Pi 5 za 449 dolarů.
Dnes v 17:30 bude oficiálně vydána open source počítačová hra DOGWALK vytvořena v 3D softwaru Blender a herním enginu Godot. Release party proběhne na YouTube od 17:00.
McDonald's se spojil se společností Paradox a pracovníky nabírá také pomocí AI řešení s virtuální asistentkou Olivii běžící na webu McHire. Ian Carroll a Sam Curry se na toto AI řešení blíže podívali a opravdu je překvapilo, že se mohli přihlásit pomocí jména 123456 a hesla 123456 a získat přístup k údajům o 64 milionech uchazečů o práci.
Byla vydána (𝕏) červnová aktualizace aneb nová verze 1.102 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.102 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Byla vydána nová verze 2.4.64 svobodného multiplatformního webového serveru Apache (httpd). Řešeno je mimo jiné 8 bezpečnostních chyb.
Class Data
{
public:
...
std::vector<u8> readU8(Info i);
std::vector<float> readFloat(Info i);
std::vector<std::vector<float>> readFloatVector(Info i);
...
}
Ve třídě Info je hromada informací podle kterých ty data získávám + jejich datový typ uložený jako enum class
enum class DatovyTyp : u8 {U8,Float,FloatVector,...}
class Info
{
public:
...
std::string jmeno;
DatovyTyp typ;
...
}
Celé použití je dost nešikovné, protože když chci získat všechny data a pak je zase dál použít, musím mít IF pro každý datový typ:
(navazující metody už jsou teplate nebo přetížené, takže umí pracovat se všemi datovými typy, které potřebuju)
Data d(...);
for(...)
{
Info i(...);
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.readFloat(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.readU8(i),...);
}
}
Použití template ve smyslu:
template <typename T>
T read(Info i)
{
...
mě sice sjednotí všechny readXY do jedné šablony, ale pořád budu muset mít IF pro každý datový typ
if(i.typ == DatovyTyp::Float)
{
std::vector<float> tmp = d.read<float>(i);
nějakáPřetíženáFunkceNeboTemplate(tmp,...);
}
else if(i.typ == VariableType::U8)
{
nějakáPřetíženáFunkceNeboTemplate(d.read<u8>(i),...);
}
Chtěl bych idálně mít nějaký kouzelný template, který vrací datový typ podle toho enum class DatovyTyp
- což pokud vím nejde.
Takže se ptám, jestli existuje nějaká možnost jak uložit informaci o datovém typu tak, abych to potom mohl použít k určení návratového datového typu v template? Zatím jsem nic nenašel a co se pamatuju, tak tohle template neumožňují - existuje nějaká možnost jak to obejít?
Nebo jak to celé upravit nějak jinak, abych se vyhnul IF pro každý datový typ?
Díky.
Data
získat. To se čistě templaty vyřešit nedá, protože templaty v C++ se řeší pouze při překladu. Nějaké runtimové logice s větvením se tedy nevyhneš. Dá se to ale částečně zjednodušit tím, že logiku, která za běhu zjistí požadovaný datový typ a podle toho zavolá příslušnou obsluhu přesuneš do jedné flexibilní funkce. Nějaký nástin, jak na to můžeš najít třeba tady: https://pastebin.com/XUvcSJUr. Vtip je v tom, že to, co se předává dispatcheru jako templatový parameter P lze naimplemetovat libovolně, zatímco dispatcher bude vždy jen jeden.
Dalo by se to samozřejmě rozšířit i pro případy, že by měl dispatcher něco vracet apod. ale princip by byl stejný...
read()
:
https://pastebin.com/5GuZk4m5
P
, která s budou používat nejčastěji můžeš implementovat ty jako autor rozhraní s tím, že coder monkey prostě zavolá nějaký wrapper okolo dispatcher
u a nebude řešit, co se vevnitř děje. std::variant
v kódu není nejspíš proto, že je to věcička až z C++17 a starší překladače to nezbaští.
std::get<float>(variant)
... jestli mi teda zase něco neuniklo std::variant
? Tam se to řeší přes visitor patern.
Data
data vždy jen jednoho typu nebo zda je možné zavolat d.readFloat()
a d.readU8()
na jedné instanci té třídy. To by se variantem myslím řešit nedalo. Aspoň trochu flexibilní logika, jak řešit ten druhý případ by mohla vypadat třeba takto:
#include <iostream> #include <vector> enum class TypeID { String, Float, Integer }; template <TypeID> struct TypeIdentifier { }; template <> struct TypeIdentifier<TypeID::String> { typedef std::string type; }; template <> struct TypeIdentifier<TypeID::Float> { typedef float type; }; template <> struct TypeIdentifier<TypeID::Integer> { typedef int32_t type; }; struct Data { template <typename T> std::vector<T> read(); }; template <> std::vector<std::string> Data::read() { return std::vector<std::string>{ "Zero", "One", "Two" }; } template <> std::vector<float> Data::read() { return std::vector<float>{ 0.1, 0.2, 0.3 }; } template <> std::vector<int32_t> Data::read() { return std::vector<int32_t>{ 10, 20, 30 }; } template <typename T> void print(const T &t) { for (auto && i : t) std::cout << i << " "; std::cout << "\n"; } template <typename T> void printReverse(const T &t) { for (auto it = t.rbegin(); it != t.rend(); it++) std::cout << *it << " "; std::cout << "\n"; } template <template <typename> class P, typename S, typename... Args> void dispatcher(const TypeID id, S &s, Args... args) { switch (id) { case TypeID::String: P<TypeIdentifier<TypeID::String>::type>::call(s, std::forward<Args>(args)...); break; case TypeID::Float: P<TypeIdentifier<TypeID::Float>::type>::call(s, std::forward<Args>(args)...); break; case TypeID::Integer: P<TypeIdentifier<TypeID::Integer>::type>::call(s, std::forward<Args>(args)...); break; } } template <typename T> struct Proc { static void call(Data &d) { auto v = d.read<T>(); print(v); } }; template <> struct Proc<int32_t> { static void call(Data &d) { std::cout << "Specialization for int32_t\n"; auto v = d.read<int32_t>(); print(v); } }; template <typename T> struct ProcTwo { template <typename... Args> static void call(Data &d, Args ...) { auto v = d.read<T>(); printReverse(v); } }; template <> struct ProcTwo<float> { static void call(Data &d, int i) { std::cout << "Specialization for float: " << i << "\n"; auto v = d.read<float>(); printReverse(v); } template <typename... Args> static void call(Data &, Args...) { throw std::runtime_error("Function called with invalid parameters"); } }; int main() { Data d; dispatcher<Proc>(TypeID::String, d); dispatcher<Proc>(TypeID::Float, d); dispatcher<Proc>(TypeID::Integer, d); dispatcher<ProcTwo>(TypeID::String, d); dispatcher<ProcTwo>(TypeID::Float, d, 66); //dispatcher<ProcTwo>(TypeID::Float, d); /* Throws at runtime */ dispatcher<ProcTwo>(TypeID::Integer, d); return 0; }
template<int N, class Head, class... Tail> struct Dispatch { static void dispatch(const Info& i, const Data& d) { if (i.typ == N) perform<Head>(i, d); else Dispatch<N+1, Tail...>::dispatch(i, d); } };
Tiskni
Sdílej: