Byla vydána nová verze 5.4.0 programu na úpravu digitálních fotografií darktable (Wikipedie). Z novinek lze vypíchnout vylepšenou podporu Waylandu. Nejnovější darktable by měl na Waylandu fungovat stejně dobře jako na X11.
Byla vydána beta verze Linux Mintu 22.3 s kódovým jménem Zena. Podrobnosti v přehledu novinek a poznámkách k vydání. Vypíchnout lze, že nástroj Systémová hlášení (System Reports) získal mnoho nových funkcí a byl přejmenován na Informace o systému (System Information). Linux Mint 22.3 bude podporován do roku 2029.
GNU Project Debugger aneb GDB byl vydán ve verzi 17.1. Podrobný přehled novinek v souboru NEWS.
Josef Průša oznámil zveřejnění kompletních CAD souborů rámů tiskáren Prusa CORE One a CORE One L. Nejsou vydány pod obecnou veřejnou licenci GNU ani Creative Commons ale pod novou licencí OCL neboli Open Community License. Ta nepovoluje prodávat kompletní tiskárny či remixy založené na těchto zdrojích.
Nový CEO Mozilla Corporation Anthony Enzor-DeMeo tento týden prohlásil, že by se Firefox měl vyvinout v moderní AI prohlížeč. Po bouřlivých diskusích na redditu ujistil, že v nastavení Firefoxu bude existovat volba pro zakázání všech AI funkcí.
V pořadí šestou knihou autora Martina Malého, která vychází v Edici CZ.NIC, správce české národní domény, je titul Kity, bity, neurony. Kniha s podtitulem Moderní technologie pro hobby elektroniku přináší ucelený pohled na svět současných technologií a jejich praktické využití v domácích elektronických projektech. Tento knižní průvodce je ideální pro každého, kdo se chce podívat na současné trendy v oblasti hobby elektroniky, od
… více »Linux Foundation zveřejnila Výroční zprávu za rok 2025 (pdf). Příjmy Linux Foundation byly 311 miliónů dolarů. Výdaje 285 miliónů dolarů. Na podporu linuxového jádra (Linux Kernel Project) šlo 8,4 miliónu dolarů. Linux Foundation podporuje téměř 1 500 open source projektů.
Jean-Baptiste Mardelle se v příspěvku na blogu rozepsal o novinkám v nejnovější verzi 25.12.0 editoru videa Kdenlive (Wikipedie). Ke stažení také na Flathubu.
OpenZFS (Wikipedie), tj. implementace souborového systému ZFS pro Linux a FreeBSD, byl vydán ve verzi 2.4.0.
Kriminalisté z NCTEKK společně s českými i zahraničními kolegy objasnili mimořádně rozsáhlou trestnou činnost z oblasti kybernetické kriminality. V rámci operací OCTOPUS a CONNECT ukončili činnost čtyř call center na Ukrajině. V prvním případě se jednalo o podvodné investice, v případě druhém o podvodné telefonáty, při kterých se zločinci vydávali za policisty a pod legendou napadeného bankovního účtu okrádali své oběti o vysoké finanční částky.
Řešení dotazu:
double a;
a = 4.000000000000000000;
a = a - 0.000000000000000001;
if (a == 3.99999999999999999999) {
printf("a %.20f == %.20f\n", a, 3.99999999999999999999);
}
Vypíše:
a 4.00000000000000000000 == 4.00000000000000000000Tedy, v obou případech se číslo 3.99999999999999999999, které není reprezentovatelné jako double, zaokrouhlí na 4 a porovnání bude fungovat.
Řekněme, že horní hranice není přesně reprezentovatelná jako double, takže třeba mám li otevřený interval (0;8,1), tak bych chtěl porovnávat horní hranici na nejvyšší menší číslo než 8,1 jako na uzavřený (řekněme a <= 8.009). Naopak, pokud je uzavřený (0;8,1>, tak bych chtěl porovnávat jako otevřený na nejnižší vyšší (např a < 8.1000001).Pro vysvětlení vyjdu z tazatelova předpokladu, že číslo 8,1 není v double reprezentovatelné, nejbližší reprezentovatelná jsou 8.009 (nižší) a 8.1000001 (vyšší). Pokud toto platí, pak mezi 8.009 a 8.1000001 není v double žádné jiné číslo. Jinak řečeno, 8.009 je nejvyšší double číslo menší než 8.1000001. V tom případě pro každé x<8.1000001 platí, že x <= 8.009. Z toho vyplývá, že ty dva tazatelem navržené způsoby porovnání jsou ekvivalentní. Tedy jinak řečeno, porovnání dopadne v obou případech stejně.
Ano, pro tenhle jednoduchý případ je vaše řešení ekvivalentní.Není. Ekvivalentní jsou porovnání na otevřený a uzavřený interval, které si navrhnul sám tazatel. Tohle druhé řešení je jiné. Které z nich je správně, to nevím - protože není úplně jasné, čeho vlastně tazatel potřebuje docílit. Zjevně to, co "potřebuje" a co "chce" jsou dvě odlišné věci.
Ale když uvádíte jiný postup řešení, než popisoval tazatel, je vhodné na to explicitně upozornit - například proto, že vaše řešení má jiné předpoklady, a tazatel by si měl ověřit, že v jeho skutečném problému jsou ty předpoklady splněné.Tohle řešení ale není moje, navrhl ho Váš předřečník, pan Kit. Já jsem jen doplnil další informace k Vaší reakci na něj. Rozpory v předpokladech jsem zjistil až posléze, když jsem se k diskusi vrátil další den (tedy spíše noc). Jinak: radím, jak nejlíp umím, tak mě za to prosím nepeskujte. Pokud se vám zdá, že pánovi radím špatně, tak mu prostě poraďte lépe.
/* The difference between 1 and the least value greater than 1 that is representable in the given floating point type, b**1-p. */což podle mě není to, co tazatel chce -- protože pro číslo 10000 bude epsilon jiné.
fabs(číslo1 - číslo2) <= DBL_EPSILON * fmax(fabs(číslo1), fabs(číslo2))
Ale pokud se s těmi čísly operuje více, tak možná deviace začne s každou operací narůstat. Třeba 0.1 + 0.2 má menší deviaci (a dá jiný výsledek) než 0.1 + 0.2 + 0.1 + 0.2 - 0.3, a přitom jsou to téměř totožná čísla (matematicky by oboje mělo být 0.3).
Python nic ošetřené nemá:
>>> .1 + .2 == .3 False
Python nic ošetřené nemá:3.5, nebo 3.6 to tuším nějak řeší. Ale zachytil jsem jen titulky, nečetl jsem podrobnosti.
The string representation of a float now uses the shortest decimal number that has the same underlying value — for example, repr(1.1) was '1.1000000000000001' in Python 2.6, but is just '1.1' in Python 2.7 and 3.1+, because both are represented the same way in a 64-bit float.a
math.isclose (and the corresponding complex version, cmath.isclose) determines whether two values are “close enough”. Intended to do the right thing when comparing floats.a
decimal.Decimal, fractions.Fraction, and floats now interoperate a little more nicely: numbers of different types hash to the same value; all three types can be compared with one another; and most notably, the Decimal and Fraction constructors can accept floats directly.-- https://eev.ee/blog/2016/07/31/python-faq-why-should-i-use-python-3/ Takže to taky neřeší automaticky ve výpočtech (pokud člověk nepoužije fraction místo double).
Tohle je k ničemu. Co s nepřesností toho 'a' na levé straně? Pokud potřebuješ přesné výpočty a porovnávání, tak nepoužívej double.
new Double(1225548.1254)?
Tiskni
Sdílej: