Před 25 lety zaplavil celý svět virus ILOVEYOU. Virus se šířil e-mailem, jenž nesl přílohu s názvem I Love You. Příjemci, zvědavému, kdo se do něj zamiloval, pak program spuštěný otevřením přílohy načetl z adresáře e-mailové adresy a na ně pak „milostný vzkaz“ poslal dál. Škody vznikaly jak zahlcením e-mailových serverů, tak i druhou činností viru, kterou bylo přemazání souborů uložených v napadeném počítači.
Byla vydána nová major verze 5.0.0 svobodného multiplatformního nástroje BleachBit (GitHub, Wikipedie) určeného především k efektivnímu čištění disku od nepotřebných souborů.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za duben (YouTube).
Provozovatel čínské sociální sítě TikTok dostal v Evropské unii pokutu 530 milionů eur (13,2 miliardy Kč) za nedostatky při ochraně osobních údajů. Ve svém oznámení to dnes uvedla irská Komise pro ochranu údajů (DPC), která jedná jménem EU. Zároveň TikToku nařídila, že pokud správu dat neuvede do šesti měsíců do souladu s požadavky, musí přestat posílat data o unijních uživatelích do Číny. TikTok uvedl, že se proti rozhodnutí odvolá.
Společnost JetBrains uvolnila Mellum, tj. svůj velký jazykový model (LLM) pro vývojáře, jako open source. Mellum podporuje programovací jazyky Java, Kotlin, Python, Go, PHP, C, C++, C#, JavaScript, TypeScript, CSS, HTML, Rust a Ruby.
Vývojáři Kali Linuxu upozorňují na nový klíč pro podepisování balíčků. K původnímu klíči ztratili přístup.
V březnu loňského roku přestal být Redis svobodný. Společnost Redis Labs jej přelicencovala z licence BSD na nesvobodné licence Redis Source Available License (RSALv2) a Server Side Public License (SSPLv1). Hned o pár dní později vznikly svobodné forky Redisu s názvy Valkey a Redict. Dnes bylo oznámeno, že Redis je opět svobodný. S nejnovější verzí 8 je k dispozici také pod licencí AGPLv3.
Oficiální ceny Raspberry Pi Compute Modulů 4 klesly o 5 dolarů (4 GB varianty), respektive o 10 dolarů (8 GB varianty).
Byla vydána beta verze openSUSE Leap 16. Ve výchozím nastavení s novým instalátorem Agama.
Devadesátková hra Brány Skeldalu prošla portací a je dostupná na platformě Steam. Vyšel i parádní blog autora o portaci na moderní systémy a platformy včetně Linuxu.
Řešení dotazu:
8=2*2*2 10=2*5 NSN(8,10)=2*2*2*5=40Cize srtuktura sa opakuje vzdy po 40 bitov. Sak nepouzivaj co najvecsi, ale najblizsi nasobok osmicky, ale najlepsie je typ int pre danu platformu. Ak vykon. Zas ak pamet.
Moja rezia pre jednu farbu: 1) nacitanie int z RAW pamete 2) vyber tych 10 bitov ktore potrebujem 3) ofset (zarovnanie na zaciatok al. koniec) 4) ulozenie na 2B do pamete 5) podmienka, ci nie je koniecA takto to zadefinujes pre kazdy hodnoty farby (10b) v 40B blok. Pozn.: Pracuj s int, lebo procesor nemusi vediet robit nejake operiacie priamo z iba castami Bajtu (napr. nasobit/delit), takze by si to musel konvertovat z/na int. Mas pocit ze Tvoje riesenie je jednoduchsie pre jednu farbu?
#if sizeof(int) < 2 #error "Data type must by higger as 2Bajty." #end
/* get n bits of data */ u8 get_bits(u8 **data, u16 *len, u8 *bitpos, u8 n) { u8 bits = 0; u8 byte; for (int i = 0; i < n; i++) { if (*len == 0) { printf("%s DATA UNDERFLOW\n", bin_n(bits, i)); return 0; } byte = *data[0]; bits <<= 1; bits |= ((byte << *bitpos) & 0x80) >> 7; (*bitpos)++; if (*bitpos > 7) { (*data)++; (*len)--; *bitpos = 0; } } return bits; }
/* * sizeof(input) = minimal 40 - spracuje 5B * sizeof(output) = minimal 8 - zapise 4B * output must be zero */ void u10to16_block(uint8_t *input, uint16_t *output) { }
Nepouzivaj na vstupe viac ako bajt - neusetris nic a vzniknu zbytocne problemy (endian, adresacia).To nie je prevda. Useetris 38% resp. 50%. Zas, tam je tazsia ta/cez endianitu. Zapis uz je lahsi.
které bych jednou for() otočkou nakopíroval do pole 16bit proměnnýchA proč to tak něudělat? Co je těžkého na tom spočítat adresu a offset v poli bajtů?
#include <stdint.h> #include <stdio.h> #include <inttypes.h> uint8_t packed[8] = { 0x01, 0xFC, 0x2F, 0xC0, 0xFF, 0x03, 0xFC, 0x0F }; uint16_t unpacked[6]; int main() { int i; for (i = 0; i < 6; ++i) { unpacked[i] = *(uint16_t *)&packed[i*10/8] >> i*10%8 & 0x3FF; printf("%" PRIu16 "\n", unpacked[i]); } return 0; }
uint64_t vstup[160000] = {0}; //vstupní buffer na 10bitový raw
uint64_t (*pvstup) = vstup;
uint16_t vystup[1024000] = {0}; //výstupní buffer na 16bit raw
uint16_t (*pvystup) = vystup;
int main(void)
{
FILE *file;
file = fopen("/ram/input.raw", "r");
fread(vstup, 1280000, 1, file); //načteno
long ocounter=0; //počítadlo otoček for(), jeden průchod = jedna výstupní proměnná. Použito k výstupní kalkulaci
int icounter=0; //počítadlo posunů v 64bit vstupním bufferu.
int bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9; // jednotlivé bity, které se budou ukládat do výst. proměnné
uint64_t obuffer = 0; //buffer pro jednu vstupní proměnnou, odsud se čte a po každé for () otočce se udělá posun doprava o 10bitů a po vyprázdnění se načte další proměnná
long ocountbuffer = 159999; //adresa proměnné vstupního bufferu, odkud se právě čte
obuffer = pvstup[159999]; //prvotní načtení
for(ocounter = 1023999; ocounter > 0; ocounter--) //smyčka pro načtení bitů do výstupní proměnné
{
bit0 = obuffer & 1;icounter++; //jasně že i tohle by šlo udělat smyčkou
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;} //test, jestli nedošlo k vyčerpání bufferu obuffer, pokud jo, načte se další vlevo od zpracovaného a vyresetuje počítadlo
bit1 = obuffer>>1 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit2 = obuffer>>2 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit3 = obuffer>>3 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit4 = obuffer>>4 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit5 = obuffer>>5 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit6 = obuffer>>6 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit7 = obuffer>>7 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit8 = obuffer>>8 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit9 = obuffer>>9 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
pvystup[ocounter] = bit0+(2*bit1)+(4*bit2)+(8*bit3)+(16*bit4)+(32*bit5)+(64*bit6)+(128*bit7)+(256*bit8)+(512*bit9); //prozatím kalkulace, tohle půjde dořešit a zrychlit bitovým posunem
obuffer = obuffer>>10; // bitový posun
printf("\rocounter %10d icounter %2d read %6d", ocounter, icounter, ocountbuffer); //debug
}
file = fopen("/ram/output.raw", "wb"); //zápis výsledku
fwrite(vystup,2048000 , 1, file);
//printf("stav%X,ocountbuffer %d, ocounter %d \n",vystup, ocountbuffer, icounter);
}
uint8_t vstup[1280000] = {0};
uint8_t (*pvstup) = vstup;
uint16_t vystup[1024000] = {0};
uint16_t (*pvystup) = vystup;
int main(void)
{
FILE *file;
file = fopen("/ram/input.raw", "r");
fread(vstup, 1280000, 1, file);
long i = 0;
long o = 0;
while(i<1023998)
{
pvystup[i] = (((pvstup[o]-16)<<2) + (pvstup[o+5]&11)); // nějak mi lítaj hlavou myšlenky na starý dobrý cmosy 4000
pvystup[i+1] = (((pvstup[o+1]-16)<<2) + ((pvstup[o+5]>>2)&11));
pvystup[i+2] = (((pvstup[o+2]-16)<<2) + ((pvstup[o+5]>>4)&11));
pvystup[i+3] = (((pvstup[o+3]-16)<<2) + ((pvstup[o+5]>>6)&11));
i = i + 4;
o = o + 5;
}
file = fopen("/ram/output.raw", "wb");
fwrite(vystup,2048000 , 1, file);
}
Kdyžtak mi to ještě odborně zkritizujte, co by se dalo udělat líp. uint8_t (*pvstup) = vstup;nespravne. Priradenie musis robit pocas behu programu, kedze pole vstup pri kazdom behu programu, je umiestnene na inej adrese (neveris, skus printf("vstup %p\n", vstup);
real 0m0,036s user 0m0,032s sys 0m0,005sod R
real 0m0,035s user 0m0,026s sys 0m0,008smoje (s __builtin_bswap16, podla, bez bodu 5)
real 0m0,022s user 0m0,013s sys 0m0,009smoje (podla, bez bodu 5)
real 0m0,018s user 0m0,011s sys 0m0,007sSposob merania: Nacitania subory cez jeden fread a spracovanie po 5B vstupnych blokov. Vystup po spracovani sa zahadzuje. Funkcia na prevod je poouzita ako static inline. Prekladane iba s parametrom -Wall.
osoba real user sys R 0.066s 0.051ms 0.015ms DaBler 0.027s 0.005ms 0.022ms ja [1] 0.024s 0.005ms 0.019ms ja 0.024s 0.000ms 0.024ms [1] - (s __builtin_bswap16, podla, bez bodu 5)
osoba real user sys R 0.030s 0.013ms 0.017ms ja [1] 0.027s 0.004ms 0.023ms DaBler 0.026s 0.004ms 0.022ms ja 0.025s 0.005ms 0.020ms [1] - (s __builtin_bswap16, podla, bez bodu 5)
osoba real user sys ja [1] 0.004s 0.000ms 0.004ms ja [1][2] 0.004s 0.004ms 0.000ms DaBler [3] 0.005s 0.000ms 0.004ms R [3] 0.005s 0.000ms 0.004ms Jirka 0.008s 0.004ms 0.004ms[1] - podla, bez bodu 5 [2] - s __builtin_bswap16
uint8_t vstup[1280000] = {0};
uint8_t (*pvstup) = vstup;
uint16_t vystup[1024000] = {0};
uint16_t (*pvystup) = vystup;
int main(void)
{
FILE *file;
file = fopen("/ram/input.raw", "r");
fread(vstup, 1280000, 1, file);
long i = 0;
long o = 0;
while(i<1023998)
{
pvystup[i] = (((pvstup[o])<<2) | (pvstup[o+5]&11));
pvystup[i+1] = (((pvstup[o+1])<<2) | ((pvstup[o+5]>>2)&11));
pvystup[i+2] = (((pvstup[o+2])<<2) | ((pvstup[o+5]>>4)&11));
pvystup[i+3] = (((pvstup[o+3])<<2) | ((pvstup[o+5]>>6)&11));
i = i + 4;
o = o + 5;
}
file = fopen("/ram/output.raw", "wb");
fwrite(vystup,2048000 , 1, file);
}
Skoro to samý. real: 0.009s user: 0.005ms sys: 0.005ms
meno instrukcii Moj 3 DaBler 6 R 6 Ty 4Problem, ze ti nespracujes po blokov ale Bajtov. Chap, ze operacny system rozdelu na pamet na stranky (tusim 4kB), tak zmena stranku vyvola prerusenie programu a musi OS prehodit stranky. A Ty tam striedas stranky. Ak spracuvas po 6B blokov, tak v mensich rozsahoch skace. Tvoje aktualne tebou napisane zadanie nestaci, lebo je vecsie ako 1/120=0,0083.
Tiskni
Sdílej: