Byla vydána (𝕏) nová verze 26.1 open source firewallové a routovací platformy OPNsense (Wikipedie). Jedná se o fork pfSense postavený na FreeBSD. Kódový název OPNsense 26.1 je Witty Woodpecker. Přehled novinek v příspěvku na fóru.
Deník TO spustil vlastní zpravodajský webový portál ToHledej.CZ s internetovým vyhledávačem a bezplatnou e-mailovou schránkou. Dle svého tvrzení nabízí 'Zprávy, komentáře, analýzy bez cenzury' a 'Mail bez šmírování a Velkého bratra'. Rozložením a vizuálním stylem se stránky nápadně podobají portálu Seznam.cz a nejspíše je cílem být jeho alternativou. Z podmínek platformy vyplývá, že portál využívá nespecifikovaný internetový vyhledávač třetí strany.
Computer History Museum (Muzeum historie počítačů) zpřístupnilo své sbírky veřejnosti formou online katalogu. Virtuálně si tak můžeme prohlédnout 'rozsáhlou sbírku archivních materiálů, předmětů a historek a seznámit se s vizionáři, inovacemi a neznámými příběhy, které revolučním způsobem změnily náš digitální svět'.
Ruský hacker VIK-on si sestavil vlastní 32GB DDR5 RAM modul z čipů získaných z notebookových 16GB SO-DIMM RAM pamětí. Modul běží na 6400 MT/s a celkové náklady byly přibližně 218 dolarů, což je zhruba třetina současné tržní ceny modulů srovnatelných parametrů.
Národní identitní autorita (NIA), která ovlivňuje přihlašování prostřednictvím NIA ID, MEP, eOP a externích identit (např. BankID), je částečně nedostupná.
Byla vydána nová verze 1.16.0 klienta a serveru VNC (Virtual Network Computing) s názvem TigerVNC (Wikipedie). Z novinek lze vypíchnout nový server w0vncserver pro sdílení Wayland desktopu. Zdrojové kódy jsou k dispozici na GitHubu. Binárky na SourceForge. TigerVNC je fork TightVNC.
Byla vydána nová verze 4.6 (𝕏, Bluesky, Mastodon) multiplatformního open source herního enginu Godot (Wikipedie, GitHub). Přehled novinek i s náhledy v příspěvku na blogu.
Rozsáhlá modernizace hardwarové infrastruktury Základních registrů měla zabránit výpadkům digitálních služeb státu. Dnešnímu výpadku nezabránila.
Čínský startup Kimi představil open-source model umělé inteligence Kimi K2.5. Nová verze pracuje s textem i obrázky a poskytuje 'paradigma samosměřovaného roje agentů' pro rychlejší vykonávání úkolů. Kimi zdůrazňuje vylepšenou schopnost modelu vytvářet zdrojové kódy přímo z přirozeného jazyka. Natrénovaný model je dostupný na Hugging Face, trénovací skripty však ne. Model má 1 T (bilion) parametrů, 32 B (miliard) aktivních.
V Raspberry Pi OS lze nově snadno povolit USB Gadget Mode a díky balíčku rpi-usb-gadget (CDC-ECM/RNDIS) mít možnost se k Raspberry Pi připojovat přes USB kabel bez nutnosti konfigurování Wi-Fi nebo Ethernetu. K podporovaným Raspberry Pi připojeným do USB portu podporujícího OTG.
Řešení dotazu:
8=2*2*2 10=2*5 NSN(8,10)=2*2*2*5=40Cize srtuktura sa opakuje vzdy po 40 bitov. Sak nepouzivaj co najvecsi, ale najblizsi nasobok osmicky, ale najlepsie je typ int pre danu platformu. Ak vykon. Zas ak pamet.
Moja rezia pre jednu farbu: 1) nacitanie int z RAW pamete 2) vyber tych 10 bitov ktore potrebujem 3) ofset (zarovnanie na zaciatok al. koniec) 4) ulozenie na 2B do pamete 5) podmienka, ci nie je koniecA takto to zadefinujes pre kazdy hodnoty farby (10b) v 40B blok. Pozn.: Pracuj s int, lebo procesor nemusi vediet robit nejake operiacie priamo z iba castami Bajtu (napr. nasobit/delit), takze by si to musel konvertovat z/na int. Mas pocit ze Tvoje riesenie je jednoduchsie pre jednu farbu?
#if sizeof(int) < 2 #error "Data type must by higger as 2Bajty." #end
/* get n bits of data */
u8 get_bits(u8 **data, u16 *len, u8 *bitpos, u8 n) {
u8 bits = 0;
u8 byte;
for (int i = 0; i < n; i++) {
if (*len == 0) {
printf("%s DATA UNDERFLOW\n", bin_n(bits, i));
return 0;
}
byte = *data[0];
bits <<= 1;
bits |= ((byte << *bitpos) & 0x80) >> 7;
(*bitpos)++;
if (*bitpos > 7) {
(*data)++;
(*len)--;
*bitpos = 0;
}
}
return bits;
}
/*
* sizeof(input) = minimal 40 - spracuje 5B
* sizeof(output) = minimal 8 - zapise 4B
* output must be zero
*/
void u10to16_block(uint8_t *input, uint16_t *output)
{
}
Nepouzivaj na vstupe viac ako bajt - neusetris nic a vzniknu zbytocne problemy (endian, adresacia).To nie je prevda. Useetris 38% resp. 50%. Zas, tam je tazsia ta/cez endianitu. Zapis uz je lahsi.
které bych jednou for() otočkou nakopíroval do pole 16bit proměnnýchA proč to tak něudělat? Co je těžkého na tom spočítat adresu a offset v poli bajtů?
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
uint8_t packed[8] = { 0x01, 0xFC, 0x2F, 0xC0, 0xFF, 0x03, 0xFC, 0x0F };
uint16_t unpacked[6];
int main()
{
int i;
for (i = 0; i < 6; ++i) {
unpacked[i] = *(uint16_t *)&packed[i*10/8] >> i*10%8 & 0x3FF;
printf("%" PRIu16 "\n", unpacked[i]);
}
return 0;
}
uint64_t vstup[160000] = {0}; //vstupní buffer na 10bitový raw
uint64_t (*pvstup) = vstup;
uint16_t vystup[1024000] = {0}; //výstupní buffer na 16bit raw
uint16_t (*pvystup) = vystup;
int main(void)
{
FILE *file;
file = fopen("/ram/input.raw", "r");
fread(vstup, 1280000, 1, file); //načteno
long ocounter=0; //počítadlo otoček for(), jeden průchod = jedna výstupní proměnná. Použito k výstupní kalkulaci
int icounter=0; //počítadlo posunů v 64bit vstupním bufferu.
int bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, bit9; // jednotlivé bity, které se budou ukládat do výst. proměnné
uint64_t obuffer = 0; //buffer pro jednu vstupní proměnnou, odsud se čte a po každé for () otočce se udělá posun doprava o 10bitů a po vyprázdnění se načte další proměnná
long ocountbuffer = 159999; //adresa proměnné vstupního bufferu, odkud se právě čte
obuffer = pvstup[159999]; //prvotní načtení
for(ocounter = 1023999; ocounter > 0; ocounter--) //smyčka pro načtení bitů do výstupní proměnné
{
bit0 = obuffer & 1;icounter++; //jasně že i tohle by šlo udělat smyčkou
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;} //test, jestli nedošlo k vyčerpání bufferu obuffer, pokud jo, načte se další vlevo od zpracovaného a vyresetuje počítadlo
bit1 = obuffer>>1 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit2 = obuffer>>2 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit3 = obuffer>>3 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit4 = obuffer>>4 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit5 = obuffer>>5 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit6 = obuffer>>6 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit7 = obuffer>>7 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit8 = obuffer>>8 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
bit9 = obuffer>>9 & 1;icounter++;
if(icounter == 64){ocountbuffer--;obuffer = pvstup[ocountbuffer];icounter = 0;}
pvystup[ocounter] = bit0+(2*bit1)+(4*bit2)+(8*bit3)+(16*bit4)+(32*bit5)+(64*bit6)+(128*bit7)+(256*bit8)+(512*bit9); //prozatím kalkulace, tohle půjde dořešit a zrychlit bitovým posunem
obuffer = obuffer>>10; // bitový posun
printf("\rocounter %10d icounter %2d read %6d", ocounter, icounter, ocountbuffer); //debug
}
file = fopen("/ram/output.raw", "wb"); //zápis výsledku
fwrite(vystup,2048000 , 1, file);
//printf("stav%X,ocountbuffer %d, ocounter %d \n",vystup, ocountbuffer, icounter);
}
uint8_t vstup[1280000] = {0};
uint8_t (*pvstup) = vstup;
uint16_t vystup[1024000] = {0};
uint16_t (*pvystup) = vystup;
int main(void)
{
FILE *file;
file = fopen("/ram/input.raw", "r");
fread(vstup, 1280000, 1, file);
long i = 0;
long o = 0;
while(i<1023998)
{
pvystup[i] = (((pvstup[o]-16)<<2) + (pvstup[o+5]&11)); // nějak mi lítaj hlavou myšlenky na starý dobrý cmosy 4000
pvystup[i+1] = (((pvstup[o+1]-16)<<2) + ((pvstup[o+5]>>2)&11));
pvystup[i+2] = (((pvstup[o+2]-16)<<2) + ((pvstup[o+5]>>4)&11));
pvystup[i+3] = (((pvstup[o+3]-16)<<2) + ((pvstup[o+5]>>6)&11));
i = i + 4;
o = o + 5;
}
file = fopen("/ram/output.raw", "wb");
fwrite(vystup,2048000 , 1, file);
}
Kdyžtak mi to ještě odborně zkritizujte, co by se dalo udělat líp.
Ale jo, když to vadí.
uint8_t (*pvstup) = vstup;nespravne. Priradenie musis robit pocas behu programu, kedze pole vstup pri kazdom behu programu, je umiestnene na inej adrese (neveris, skus printf("vstup %p\n", vstup);
real 0m0,036s user 0m0,032s sys 0m0,005sod R
real 0m0,035s user 0m0,026s sys 0m0,008smoje (s __builtin_bswap16, podla, bez bodu 5)
real 0m0,022s user 0m0,013s sys 0m0,009smoje (podla, bez bodu 5)
real 0m0,018s user 0m0,011s sys 0m0,007sSposob merania: Nacitania subory cez jeden fread a spracovanie po 5B vstupnych blokov. Vystup po spracovani sa zahadzuje. Funkcia na prevod je poouzita ako static inline. Prekladane iba s parametrom -Wall.
osoba real user sys R 0.066s 0.051ms 0.015ms DaBler 0.027s 0.005ms 0.022ms ja [1] 0.024s 0.005ms 0.019ms ja 0.024s 0.000ms 0.024ms [1] - (s __builtin_bswap16, podla, bez bodu 5)
osoba real user sys R 0.030s 0.013ms 0.017ms ja [1] 0.027s 0.004ms 0.023ms DaBler 0.026s 0.004ms 0.022ms ja 0.025s 0.005ms 0.020ms [1] - (s __builtin_bswap16, podla, bez bodu 5)
osoba real user sys ja [1] 0.004s 0.000ms 0.004ms ja [1][2] 0.004s 0.004ms 0.000ms DaBler [3] 0.005s 0.000ms 0.004ms R [3] 0.005s 0.000ms 0.004ms Jirka 0.008s 0.004ms 0.004ms[1] - podla, bez bodu 5 [2] - s __builtin_bswap16
uint8_t vstup[1280000] = {0};
uint8_t (*pvstup) = vstup;
uint16_t vystup[1024000] = {0};
uint16_t (*pvystup) = vystup;
int main(void)
{
FILE *file;
file = fopen("/ram/input.raw", "r");
fread(vstup, 1280000, 1, file);
long i = 0;
long o = 0;
while(i<1023998)
{
pvystup[i] = (((pvstup[o])<<2) | (pvstup[o+5]&11));
pvystup[i+1] = (((pvstup[o+1])<<2) | ((pvstup[o+5]>>2)&11));
pvystup[i+2] = (((pvstup[o+2])<<2) | ((pvstup[o+5]>>4)&11));
pvystup[i+3] = (((pvstup[o+3])<<2) | ((pvstup[o+5]>>6)&11));
i = i + 4;
o = o + 5;
}
file = fopen("/ram/output.raw", "wb");
fwrite(vystup,2048000 , 1, file);
}
Skoro to samý.
real: 0.009s user: 0.005ms sys: 0.005ms
meno instrukcii
Moj 3
DaBler 6
R 6
Ty 4
Problem, ze ti nespracujes po blokov ale Bajtov. Chap, ze operacny system rozdelu na pamet na stranky (tusim 4kB), tak zmena stranku vyvola prerusenie programu a musi OS prehodit stranky. A Ty tam striedas stranky. Ak spracuvas po 6B blokov, tak v mensich rozsahoch skace.
Tvoje aktualne tebou napisane zadanie nestaci, lebo je vecsie ako 1/120=0,0083.
Tiskni
Sdílej: