Vláda Spojených států získala desetiprocentní podíl v americkém výrobci čipů Intel. Oznámili to podle agentur americký prezident Donald Trump a ministr obchodu Howard Lutnick. Společnost Intel uvedla, že výměnou za desetiprocentní podíl obdrží státní dotace v hodnotě 8,9 miliardy dolarů (zhruba 186 miliard Kč). Částka podle Intelu zahrnuje dříve přislíbené subvence 5,7 miliardy dolarů z programu CHIPS na podporu výroby čipů v USA,
… více »Organizace Apache Software Foundation (ASF) vydala verzi 27 integrovaného vývojového prostředí a vývojové platformy napsané v Javě NetBeans (Wikipedie). Přehled novinek na GitHubu. Instalovat lze také ze Snapcraftu a Flathubu.
Knihovna FFmpeg byla vydána ve verzi 8.0 „Huffman“. Přibyla mj. podpora hardwarově akcelerovaného kódování s využitím API Vulcan, viz seznam změn.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) vydal Zprávu o stavu kybernetické bezpečnosti ČR za rok 2024 (pdf). V loňském roce NÚKIB evidoval dosud nejvíce kybernetických bezpečnostních incidentů s celkovým počtem 268. Oproti roku 2023 se však jedná pouze o drobný nárůst a závažnost dopadů evidovaných incidentů klesá již třetím rokem v řadě. V minulém roce NÚKIB evidoval pouze jeden velmi významný incident a významných incidentů bylo zaznamenáno 18, což oproti roku 2023 představuje pokles o více než polovinu.
Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie). Servo mimo jiné nově zvládne animované obrázky APNG a WebP.
Na chytré telefony a počítačové tablety v Rusku bude od začátku příštího měsíce povinné předinstalovávat státem podporovanou komunikační aplikaci MAX, která konkuruje aplikaci WhatsApp americké společnosti Meta Platforms. Oznámila to dnes ruská vláda. Ta by podle kritiků mohla aplikaci MAX používat ke sledování uživatelů. Ruská státní média obvinění ze špehování pomocí aplikace MAX popírají. Tvrdí, že MAX má méně oprávnění k přístupu k údajům o uživatelích než konkurenční aplikace WhatsApp a Telegram.
Společnost PINE64 stojící za telefony PinePhone nebo notebooky Pinebook publikovala na svém blogu srpnový souhrn novinek. Kvůli nedostatečnému zájmu byla ukončena výroba telefonů PinePhone Pro.
Po pěti měsících vývoje byla vydána nová verze 0.15.1 programovacího jazyka Zig (GitHub, Wikipedie). Verze 0.15.0 byla přeskočena. Přispělo 162 vývojářů. Přehled novinek v poznámkách k vydání.
Před sedmi lety společnost Valve představila fork projektu Wine s názvem Proton umožňující v Linuxu přímo ze Steamu hrát počítačové hry do té doby běžící pouze ve Windows. Aktuální přehled podporovaných her na stránkách ProtonDB
Společnost DuckDuckGo rozšířila svůj AI chat Duck.ai o GPT-5 mini (𝕏). Duck.ai umožňuje anonymní přístup bez vytváření účtů k několika modelům umělé inteligence. Aktuálně k GPT-4o mini, GPT-5 mini, Llama 4 Scout, Claude Haiku 3.5 a Mistral Small 3.
Byl jsem požádán abych udělal jednoduchý test GCD, ze kerého by bylo poznat jak se to v reálu chová, jaký to má overhead a podobně.
#include < stdio.h> #include < stdlib.h> #include < stdint.h> #include < inttypes.h> #include < math.h> #include < dispatch/dispatch.h> int main(void) { dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); int count = 100; #ifdef GCD dispatch_apply(count, queue, ^(size_t i) { printf("start %i\r\n",i); double suma =0; for(int y=1;y<=1000;y++) for(int x=1;x<100000;x++) suma += i*sin(y/x); printf("konec %i vysledek %e\r\n",i, suma); }); #else double suma; for(size_t i=0;i< count;i++) { printf("start %i\r\n",i); suma =0; for(int y=1;y<=1000;y++) for(int x=1;x<100000;x++) suma += i*sin(y/x); printf("konec %i vysledek %e\r\n",i, suma); } #endif return 0; }
Uznávám, že ten výpočet je nezajímavý, ale je to vyloženě jen za účelem jednoduchého testu. Pokud máte nějaký nápad co tam místo suma += i*sin(y/x); dát tak sem s tím :)
Pokud to přeložíme s direktívou GCD tak se provede výpočet paralelně s využitím GCD jinak se provede výpočet sekvenčně.
Výstup s GCD:start 0 start 1 start 2 start 3 start 4 start 5 start 6 start 7 konec 1 vysledek 2.638081e+05 start 8 konec 4 vysledek 1.052888e+04 start 9 ...jinými slovy namnoží to 8 threadů, což dává na osmijádru smysl. Výstup time s GCD:
real 0m9.659s user 1m12.893s sys 0m0.102sVýstup time bez GCD:
real 1m12.919s user 1m12.874s sys 0m0.033s
Speedup je tedy 7.55 což je na osmijádru adekvátní výsledek pro zcela paralelizovatelnou úlohu, která se vejde do L1 cache.
Nyní omezíme cyklus y z 1000 na 100 iterací a count zvedneme ze 100 na 1000, vyřadíme printf aby výsledek nebyl ovlivněn výstupem na konzoli a změníme deklaraci sumy na volatile aby nám ji mrcha-překladač neodpotimalizoval. Jinými slovy zkrátíme jednu úlohu desetinásobně ale vyrobíme jich desetkrát víc.
Výstup time s GCD:real 0m9.324s user 1m10.831s sys 0m0.137sVýstup time bez GCD:
real 1m10.870s user 1m10.806s sys 0m0.046s
Speedup je 7.6 tedy lepší než v minulém případě. To se dá vysvětlit tak, že ke konci výpočtu se už nudí jelikož pro ně není připraven žádný výpočetní blok, po kratičký okamžik počítá dokonce jen jedno jádro. Když zmenšíme dobu výpočtu jednoho bloku tak tuto dobu relativně k době celého výpočtu zkrátíme. Je také vidět, že bloků, jejichž výpočet trvá 7ms se vůbec nemusíme bát, réžie zařazování do fronty a přiřazování k threadům se zjevně příliš neprojeví. Takto lze dál zmenšovat vnitřní cykly a zvětšovat count a zjistíme, že karta se obrací až u bloků s trváním pod 0.05ms. Z toho lze usoudit, že výkonnostní réžie GCD je velmi malá.
Vraťme se ale k původnímu programu, vyrobme 4 instance každá bude vypisovat jiné písmeno a spustíme je současně. Jak bude vypadat výstup?
C: start 0 C: start 1 C: start 2 B: start 0 D: start 0 B: start 1 D: start 1 A: start 0 B: start 2 C: start 3 C: start 4 D: start 2 C: start 5 B: start 3 C: start 6 D: start 3 B: start 4 C: start 7 D: start 4 A: start 1 B: start 5 D: start 5 D: start 6 B: start 6 A: start 2 D: start 7 B: start 7 A: start 3 A: start 4 A: start 5 A: start 6 A: start 7 D: konec 7 vysledek 1.842554e+04 D: start 8 ...
Jinými slovy nedělá to to, co bylo slibováno- vytvoří to 32 threadů
Tiskni
Sdílej:
Aha pardon, ja si neuvědomil na co se vlastně ptáš. Ty čtyři instance, které jsem zmínil to jsou 4 současně spuštěné procesy lišící se jen písmenkem které na začátaku vypisují. Prostě
time ./p1 & time ./p2 & time ./p3 & time ./p4
(nechtělo se mi hrát s va_args )
Teorie je taková, že by měl GCD inteligentně zasáhnout a pro každý proces povolit jen 2 thready ale neudělá to a povolí pro každý 8 threadů- Kdyby ty procesy více komunikovaly s pamětí tak by si navzájem přepisovaly TLB a obsah cache. Tohle určitě není optimální řešení...
Ok, takto som to aj pochopil, ale je-lepší-si-bejt-jistej-než-potom-litovat
Podle mě to je fér. Jak chcete ošetřit třeba to, že na začátku spuštění úlohy jsou využité sice všechny jádra jiným procesem, který se ale za chvilku uklidní. Takto se sice vytvoří hodně vláken, které může OS spustit každé po sobě, takže v nejhorším případě by to mělo trvat jen o trochu dýl, než v případě jedno vlákna (o čas potřebný na synchronizaci / spuštění úloh).
Jediná možnost jak využít pouze dostupný potenciál je nějaká komunikace s OS (něco takového existuje zatím jen pro Windows 7).
Přesně to Apple ve svých materiálech (nejen těch marketingových) slibuje - GCD má mít přehled o stavu front v celosystémovém měřítku a přidělovat prostředky na základě momentálního vytížení a znalosti všech front. Když spustím 8 instancí té aplikace tak se dostanu na load 64. Epic fail actually.
Jste si jist, ze to skutecne vytvorilo 32 threadu? Vidite to v process manageru nebo to jen odhadujete z toho, ze se Vam spustilo 32 uloh pred prvnim ukoncenim?
Bude se to chovat stejne, kdyz globalni (konkurentni) frontu vymenite za vlastni serializovanou?
Jsem, Mac OS ochotne praskne kolik ma proces threadu navic při 4 procesech load spolehlivě vyleze až na 32 a při 8 procesech na 64.
Když vyměním frontu za serializovanou tak se spustí jediný thread.
OK. O to mi slo. Ze samotneho vystupu programu to totiz bez znalosti implementace globalni (konkurentni) fronty urcit nelze.
Cili to znamena, ze GCD optimalizuje nikoliv pro system, nybrz pro proces. Otazkou ale je, zda je to spatne ci ne -- priklad:
Procak se 4 jadry.
V systemu bezi 8 procesu, ktere aktivne vyuzivaji asynchronni GCD.
i) V pripade optimalizace pro system dle Vasi predstavy: GCD vytvori (az) 4 vlakna, na nichz se bude tech 8 procesu nejakym zpusobem stridat.
ii) V pripade optimalizace pro proces: GCD vytvori az 4 vlakna pro kazdy proces (dle aktualniho vyuzivani async dispatche kazdym procesem), ktere jsou dedikovany pro dany proces. Celkove v systemu v jeden cas az 32 vlaken specialne pro GCD.
ad i) Dovedu si predstavit, zvlaste tehdy, kdy exekuce jednoho tasku je casove netrivialni zalezitosti, ze nektere aplikace by naopak mohly ztratit na responsivite.
ad ii) Muzou existovat pripady, kdy bude v jednu dobu v systemu pomerne znacne mnozstvi vlaken specialne jen pro GCD, ktere budou vsechny aktivni. Scheduler se z toho pak mozna zblazni a responsivita aplikaci pujde zrejme take ke dnu. Otazkou je, zda je pocet GCD vlaken pro proces dynamicky menitelny ci nikoliv, tj. zda maji vzdy staticky thread pool nebo jeho kapacitu v runtimu prizpusobuji.
Pocitam, ze vysvetleni bude asi takove:
1) Bud je to jiz finalni verze implementace GCD presne podle predstav Apple vyvojaru. A pak bych jim veril, ze maji jednotlive varianty zmerene skrz naskrz a vysledkem je ta nejlepsi.
2) Nebo jde o prvni, neuplnou implementaci GCD, ktera jeste muze v dalsich (sub)releasech Mac OS X doznat zmen.
Ha, nasel jsem na applovskym mailing listu pomerne rozsahlou diskusi na prakticky stejne tema. Jeste jsem se ji neprokousal, takze zatim bez komentare jen odkaz:
lists.apple.com/archives/PerfOptimization-dev/2009/Sep/msg00003.html
Aha, pak je ale otázka, jestli je to vůbec možné. Podle mě není problém 8 vláken na proces, který něco počítá. Pokud má OS mnoho běžících procesů, tak ty vlákna zavolá sekvenčně, a výsledek bude trochu horší, než optimalizovaný pro jedno vlánko (ale asi né o moc horší).
V knihovně Fog jsem dělal multivláknové vykreslování, celkem jsem s tím experimentoval (nastavoval jsem u vláken i affinity a tak), ale dospěl jsem k závěru, že je lepší to nechat na OS. Pokud je OS zatížený, tak si ty vlákna zavolá postupně a je z toho prakticky jednovláknové vykreslování. Pokud má volné prostředky, tak to pustí na všechny jádra a výsledný čas je lepší.
Zjistil jsem, že pro náročnější úlohy (momentálně je to rasterizer) je největší problém memory management a L1/L2/L3 cache. Například u některých benchmarků na noťasu mi vychází, že při použití více vláken na jednodádru je vykreslení rychlejší, než při použití jen jednoho vlákna (hlavního). Vysvětlení je takové, že jednotlivé vlákna sice byly spuštěné postupně (sekvenčně), ale jejich práce se vešla do cache procesoru, takže výsledný čas byl třeba o 40% lepší (i přes minimální overhead způsobený synchronizací).
Troufám si dokonce tvrdit, že všechny SW grafické knihovny (je to můj obor:) ), co jsem viděl, jsou navržené s ohledem na dnešní procesory špatně, a teď nemluvím jen o cairu nebo GDI+, ale zapadá sem přes veškeré optimalizace i Fog a mnoho dalších knihoven / rasterizerů, které vykreslují věci postupně (bez analýzy). Možná se i někdy dopracuju k ideálnímu řešení.
Zjistil jsem, že pro náročnější úlohy (momentálně je to rasterizer) je největší problém memory management a L1/L2/L3 cache.ve svem dusledku tady tyto veci nema moc cenu resit... protoze kazdy procesor si to resi po svem... je rozdil, jak se chova k pameti vicejadrovy notebookovy procesor typu core duo a jak se chova viceprocesorovy stroj s xeony... a to nemluvim o tom, ze uplne jinak se chovaji opterony. a to se pohybujeme jenom v ramci jedne architektury...
Například u některých benchmarků na noťasu mi vychází, že při použití více vláken na jednodádru je vykreslení rychlejší, než při použití jen jednoho vlákna (hlavního).docela casto podobne situace nastavaji pokud je potreba delsi dobu cekat na nejake I/O.
V mém případě se jedná o čistý benchmark bez IO atd. Ten memory management jsem zmínil proto, protože u některých úloh hodně záleží na velikosti cache (a v grafické knihovně je celkem silný předpoklad, že data se do cache nevejdou), takže i celkem triviální přepis může znamenat výkonnostní rozdíl v desítkách procent.
Ještě bych upřesnil, že používám architekturu x86/x64. Ostatní architektury pro mě v současnosti nejsou zajímavé.