Byla vydána (Mastodon, 𝕏) vývojová verze 3.1.4 příští stabilní verze 3.2 svobodné aplikace pro úpravu a vytváření rastrové grafiky GIMP (GNU Image Manipulation Program). Přehled novinek v oznámení o vydání.
Zakladatel ChimeraOS představil další linuxovou distribuci zaměřenou na hráče počítačových her. Kazeta je linuxová distribuce inspirována herními konzolemi z 90. let. Pro hraní hry je potřeba vložit paměťové médium s danou hrou. Doporučeny jsou SD karty.
Komunita kolem Linuxu From Scratch (LFS) vydala Linux From Scratch 12.4 a Linux From Scratch 12.4 se systemd. Nové verze knih s návody na instalaci vlastního linuxového systému ze zdrojových kódů přichází s Glibc 2.42, Binutils 2.45 a Linuxem 6.15.1. Současně bylo oznámeno vydání verze 12.4 knih Beyond Linux From Scratch (BLFS) a Beyond Linux From Scratch se systemd.
Organizátoři konference LinuxDays ukončili veřejné přihlašování přednášek. Teď je na vás, abyste vybrali nejlepší témata, která na letošní konferenci zaznějí. Hlasovat můžete do neděle 7. září. Poté podle výsledků hlasování organizátoři sestaví program pro letošní ročník. Konference proběhne 4. a 5. října v Praze.
Byla vydána verze 11.0.0 vizuálního programovacího jazyka Snap! (Wikipedie) inspirovaného jazykem Scratch (Wikipedie). Přehled novinek na GitHubu.
Na čem aktuálně pracují vývojáři GNOME a KDE Plasma? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE Plasma. Vypíchnout lze, že v Plasmě byl implementován 22letý požadavek. Historie schránky nově umožňuje ohvězdičkovat vybrané položky a mít k ním trvalý a snadný přístup.
Wayfire, kompozitní správce oken běžící nad Waylandem a využívající wlroots, byl vydán ve verzi 0.10.0. Zdrojové kódy jsou k dispozici na GitHubu. Videoukázky na YouTube.
Před necelými čtyřmi měsíci byl Steven Deobald jmenován novým výkonným ředitelem GNOME Foundation. Včera skončil, protože "nebyl pro tuto roli v tento čas ten pravý".
Nové číslo časopisu Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 156 (pdf).
Armbian, tj. linuxová distribuce založená na Debianu a Ubuntu optimalizovaná pro jednodeskové počítače na platformě ARM a RISC-V, ke stažení ale také pro Intel a AMD, byl vydán ve verzi 25.8.1. Přehled novinek v Changelogu.
Bez lidske inteligence si nemuze poradit ani s takovou trivialitou jako je treba odvozeni funkce (operatoru) nerovnosti:
-- nejprve operator ekvivalence
(==) :: Eq a => a -> a -> Bool
-- nerovnost ?
(/=) ? Eq a => a -> a -> Bool
-- error: cannot infer
-- musi natukat clovek
x /= y == not (x == y)
-- a je to :)
x /= y = not (x == y)
Bez lidske inteligence si nemuze poradit ani s takovou trivialitou jako je treba odvozeni funkce (operatoru) nerovnosti:
Docela mě překvapuje, že to nevrátí třeba x /= y = True
.
Příkaz Auto zvládne doplnit i složitější výrazy. Například return
a bind
pro stavovou monádu doplní takto:
record Pair (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B record State (S A : Set) : Set where constructor state field runState : S → Pair S A -- vygenerovane prikazem Auto return : {S A : Set} → A → State S A return x = state (λ z → z , x) -- vygenerovane prikazem Auto (a spatne) bind : {S A B : Set} → State S A → (A → State S B) → State S B bind m f = state (λ z → z , Pair.proj₂ (State.runState (f (Pair.proj₂ (State.runState m z))) z))
bind
je bohužel špatně – typ totiž nezakazuje použití původního stavu. Když ale umožním, aby se typ stavu měnil (pak už to není monáda), tak Auto vygeneruje již korektní definici i pro bind
:
record IState (S₁ S₂ A : Set) : Set where constructor state field runState : S₁ → Pair S₂ A -- vygenerovane prikazem Auto ibind : {S₁ S₂ S₃ A B : Set} → IState S₁ S₂ A → (A → IState S₂ S₃ B) → IState S₁ S₃ B ibind m f = state (λ z → Pair.proj₁ (IState.runState (f (Pair.proj₂ (IState.runState m z))) (Pair.proj₁ (IState.runState m z))) , Pair.proj₂ (IState.runState (f (Pair.proj₂ (IState.runState m z))) (Pair.proj₁ (IState.runState m z))))Nicméně perfektní to není – některé výrazy se tam zbytečně opakují, člověk by napsal:
-- napsane clovekem ibind' : {S₁ S₂ S₃ A B : Set} → IState S₁ S₂ A → (A → IState S₂ S₃ B) → IState S₁ S₃ B ibind' m f = state (λ st₁ → let (st₂ , a) = IState.runState m st₁ in IState.runState (f a) st₂)
IMHO to ale moc prakticky neni.Hodí se to v důkazech. Tam potřebuji najít term s daným typem a už příliš nezáleží na tom, jak ten term vypadá.
Bez Vimu si jiz nedokazi predstavit svuj zivot
Ale ten Emacs ma spousty zajimavych funkci a doplnku, ktere bych rad pouzival a ve svete vimu jsou nedokonale imitovane. Napr. org mod a velmi kvalitni integrace REPLu funkcionalnich jazyku. No uvidim, treba se nekdy hacknu.
Hm, moc tomu nerozumim
Máte nějaký konkrétní dotaz, třeba bych mohl pomoci?
Mně se na Agdě a podobných jazycích líbí minimalističnost kombinovaná se silou typového systému. Naopak mi vadí absence aktuální definice jazyka – bylo by super, kdyby někdo zpracoval definici na úrovni Standard ML (viz stará verze: The Definition of Standard ML - Version 2).
Hlavní využití příkazu Auto je při hledání důkazů – tam totiž jde pouze o nalezení termu s odpovídajícím typem a je jedno, jak ten term vypadá. Je tohle odpověď na vaši otázku?
int f(int a, int b)a editor me k tomu doplnil:
{ return a + b; }i kdyz jsem mohl chtit odcitani, nasobeni, nebo neco slozitejsiho?
i kdyz jsem mohl chtit odcitani, nasobeni, nebo neco slozitejsiho?
Přesně tak. Například, když chci odčítání a použiji typ
binop₁ : ℕ → ℕ → ℕ
tak dostanu
binop₁ a b = b
což není odčítání. Musím tedy upřesnit typ:
binop₂ : (x : ℕ) → (y : ℕ) → Pair ℕ (minus_pred x y)
Místo pouhého čísla vracím dvojici. První prvek dvojice je číslo a druhý prvek je důkaz, že první prvek je rozdíl x
a y
. Odečítání definuji následovně:
_∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ _ = zero suc m ∸ suc n = m ∸ n
Rovnost vyjadřuji pomocí následujícího typu. Typ je navržen tak, že term refl
typu a ≡ b
jde zkonstruovat pouze tehdy, jsou-li a
a b
stejné:
data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x
Následuje definice závislého páru, kde typ druhé složky závisí na hodnotě první složky:
record Pair (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁
Nastavení parseru:
infixl 6 _∸_ infix 4 _≡_ _,_
Funkce vracející typ (tj. výrok), že rozdíl prvních dvou čísel je roven třetímu číslu:
minus_pred : ℕ → ℕ → ℕ → Set minus_pred x y res = x ∸ y ≡ res
Pro tento typ už příkaz Auto vygeneruje požadovanou funkci:
binop₂ : (x : ℕ) → (y : ℕ) → Pair ℕ (minus_pred x y) binop₂ a b = a ∸ b , refl
Myslím, že neuniká. V ničem to není lepší. Je to jen příklad, že vlastnost výsledku funkce jde specifikovat typem. V tomto případě to však nemá žádné výhody – spíše naopak.
Příklad praktického použití je třeba funkce, která transformuje program a kde chceme, aby výsledný program dával stejné výsledky jako původní program.
Příklad praktického použití je třeba funkce, která transformuje program a kde chceme, aby výsledný program dával stejné výsledky jako původní program.Tohle větou jsi měl celý článek uvést
Vygenerovalo by to neco i kdybych nenadefinoval operator _-_ a minus_pred definoval jinym zpusobem - treba pomoci scitani?
Nejspíš ne.
Konkrétně, pokud máte na mysli podobnou definici
minus_pred : ℕ → ℕ → ℕ → Set minus_pred x y res = y + res ≡ x
tak ne. Problém je v tom, že pro x < y
neexistuje přirozené číslo res
a Auto hledá totální funkci (všude definovanou).
Kdybych zadefinoval relaci ≥
a funkci binop₂
definoval pouze pro x ≥ y
, tak by to stejně nenašel – je to už příliš složité. Nezkoušel jsem to, ale myslím, že by se muselo nadefinovat ∸
, pak dokázat lemma, že z x ≥ y
a x ∸ y ≡ res
plyne y + res ≡ x
, a pak by to našel (ale to už není příliš zajímavé, protože je to vlastně celé hotové).
Tiskni
Sdílej: