Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,2 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,42 %. Procesor AMD používá 66,72 % hráčů na Linuxu.
Canonical oznámil (YouTube), že nově nabízí svou podporu Ubuntu Pro také pro instance Ubuntu na WSL (Windows Subsystem for Linux).
Samsung představil svůj nejnovější chytrý telefon Galaxy Z TriFold (YouTube). Skládačka se nerozkládá jednou, ale hned dvakrát, a nabízí displej s úhlopříčkou 10 palců. V České republice nebude tento model dostupný.
Armbian, tj. linuxová distribuce založená na Debianu a Ubuntu optimalizovaná pro jednodeskové počítače na platformě ARM a RISC-V, ke stažení ale také pro Intel a AMD, byl vydán ve verzi 25.11.1. Přehled novinek v Changelogu.
Byla vydána nová verze 15.0 svobodného unixového operačního systému FreeBSD. Podrobný přehled novinek v poznámkách k vydání.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04 1.1 a 20.04 OTA-11. Vedle oprav chyb a drobných vylepšení je řešen také středně závažný bezpečnostní problém.
I letos vyšla řada ajťáckých adventních kalendářů: Advent of Code 2025, Perl Advent Calendar 2025, CSS Advent Calendar 2025, Advent of A11Y 2025, Advent of AI Security 2025, Advent of Agents (in Google) 2025, Advent of Svelte 2025, …
Fedora zve na dvoudenní testování (2. a 3. prosince), během kterého si můžete vyzkoušet nové webové uživatelské rozhraní (WebUI) projektu FreeIPA. Pomozte vychytat veškeré chyby a vylepšit uživatelskou zkušenost ještě předtím, než se tato verze dostane k uživatelům Fedory a celého linuxového ekosystému.
Eben Upton oznámil zdražení počítačů Raspberry Pi, kvůli růstu cen pamětí, a představil 1GB verzi Raspberry Pi 5 za 45 dolarů.
Linus Torvalds na YouTube kanálu Linus Tech Tips staví dokonalý linuxový počítač.
Bez lidske inteligence si nemuze poradit ani s takovou trivialitou jako je treba odvozeni funkce (operatoru) nerovnosti:
-- nejprve operator ekvivalence
(==) :: Eq a => a -> a -> Bool
-- nerovnost ?
(/=) ? Eq a => a -> a -> Bool
-- error: cannot infer
-- musi natukat clovek
x /= y == not (x == y)
-- a je to :)
x /= y = not (x == y)
Bez lidske inteligence si nemuze poradit ani s takovou trivialitou jako je treba odvozeni funkce (operatoru) nerovnosti:
Docela mě překvapuje, že to nevrátí třeba x /= y = True.
Příkaz Auto zvládne doplnit i složitější výrazy. Například return a bind pro stavovou monádu doplní takto:
record Pair (A B : Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B
record State (S A : Set) : Set where
constructor state
field
runState : S → Pair S A
-- vygenerovane prikazem Auto
return : {S A : Set} → A → State S A
return x = state (λ z → z , x)
-- vygenerovane prikazem Auto (a spatne)
bind : {S A B : Set} → State S A → (A → State S B) → State S B
bind m f = state
(λ z →
z ,
Pair.proj₂
(State.runState (f (Pair.proj₂ (State.runState m z))) z))
bind je bohužel špatně – typ totiž nezakazuje použití původního stavu. Když ale umožním, aby se typ stavu měnil (pak už to není monáda), tak Auto vygeneruje již korektní definici i pro bind:
record IState (S₁ S₂ A : Set) : Set where
constructor state
field
runState : S₁ → Pair S₂ A
-- vygenerovane prikazem Auto
ibind : {S₁ S₂ S₃ A B : Set} → IState S₁ S₂ A → (A → IState S₂ S₃ B) → IState S₁ S₃ B
ibind m f = state
(λ z →
Pair.proj₁
(IState.runState (f (Pair.proj₂ (IState.runState m z)))
(Pair.proj₁ (IState.runState m z)))
,
Pair.proj₂
(IState.runState (f (Pair.proj₂ (IState.runState m z)))
(Pair.proj₁ (IState.runState m z))))
Nicméně perfektní to není – některé výrazy se tam zbytečně opakují, člověk by napsal:
-- napsane clovekem
ibind' : {S₁ S₂ S₃ A B : Set} → IState S₁ S₂ A → (A → IState S₂ S₃ B) → IState S₁ S₃ B
ibind' m f = state
(λ st₁ →
let (st₂ , a) = IState.runState m st₁
in IState.runState (f a) st₂)
IMHO to ale moc prakticky neni.Hodí se to v důkazech. Tam potřebuji najít term s daným typem a už příliš nezáleží na tom, jak ten term vypadá.
Bez Vimu si jiz nedokazi predstavit svuj zivot 
Ale ten Emacs ma spousty zajimavych funkci a doplnku, ktere bych rad pouzival a ve svete vimu jsou nedokonale imitovane. Napr. org mod a velmi kvalitni integrace REPLu funkcionalnich jazyku. No uvidim, treba se nekdy hacknu.
Hm, moc tomu nerozumim
Máte nějaký konkrétní dotaz, třeba bych mohl pomoci?
Mně se na Agdě a podobných jazycích líbí minimalističnost kombinovaná se silou typového systému. Naopak mi vadí absence aktuální definice jazyka – bylo by super, kdyby někdo zpracoval definici na úrovni Standard ML (viz stará verze: The Definition of Standard ML - Version 2).
Hlavní využití příkazu Auto je při hledání důkazů – tam totiž jde pouze o nalezení termu s odpovídajícím typem a je jedno, jak ten term vypadá. Je tohle odpověď na vaši otázku?
int f(int a, int b)a editor me k tomu doplnil:
{
return a + b;
}
i kdyz jsem mohl chtit odcitani, nasobeni, nebo neco slozitejsiho?
i kdyz jsem mohl chtit odcitani, nasobeni, nebo neco slozitejsiho?
Přesně tak. Například, když chci odčítání a použiji typ
binop₁ : ℕ → ℕ → ℕ
tak dostanu
binop₁ a b = b
což není odčítání. Musím tedy upřesnit typ:
binop₂ : (x : ℕ) → (y : ℕ) → Pair ℕ (minus_pred x y)
Místo pouhého čísla vracím dvojici. První prvek dvojice je číslo a druhý prvek je důkaz, že první prvek je rozdíl x a y. Odečítání definuji následovně:
_∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ _ = zero suc m ∸ suc n = m ∸ n
Rovnost vyjadřuji pomocí následujícího typu. Typ je navržen tak, že term refl typu a ≡ b jde zkonstruovat pouze tehdy, jsou-li a a b stejné:
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
Následuje definice závislého páru, kde typ druhé složky závisí na hodnotě první složky:
record Pair (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
Nastavení parseru:
infixl 6 _∸_ infix 4 _≡_ _,_
Funkce vracející typ (tj. výrok), že rozdíl prvních dvou čísel je roven třetímu číslu:
minus_pred : ℕ → ℕ → ℕ → Set minus_pred x y res = x ∸ y ≡ res
Pro tento typ už příkaz Auto vygeneruje požadovanou funkci:
binop₂ : (x : ℕ) → (y : ℕ) → Pair ℕ (minus_pred x y) binop₂ a b = a ∸ b , refl
Myslím, že neuniká. V ničem to není lepší. Je to jen příklad, že vlastnost výsledku funkce jde specifikovat typem. V tomto případě to však nemá žádné výhody – spíše naopak.
Příklad praktického použití je třeba funkce, která transformuje program a kde chceme, aby výsledný program dával stejné výsledky jako původní program.
Příklad praktického použití je třeba funkce, která transformuje program a kde chceme, aby výsledný program dával stejné výsledky jako původní program.Tohle větou jsi měl celý článek uvést
Vygenerovalo by to neco i kdybych nenadefinoval operator _-_ a minus_pred definoval jinym zpusobem - treba pomoci scitani?
Nejspíš ne.
Konkrétně, pokud máte na mysli podobnou definici
minus_pred : ℕ → ℕ → ℕ → Set minus_pred x y res = y + res ≡ x
tak ne. Problém je v tom, že pro x < y neexistuje přirozené číslo res a Auto hledá totální funkci (všude definovanou).
Kdybych zadefinoval relaci ≥ a funkci binop₂ definoval pouze pro x ≥ y, tak by to stejně nenašel – je to už příliš složité. Nezkoušel jsem to, ale myslím, že by se muselo nadefinovat ∸, pak dokázat lemma, že z x ≥ y a x ∸ y ≡ res plyne y + res ≡ x, a pak by to našel (ale to už není příliš zajímavé, protože je to vlastně celé hotové).
Tiskni
Sdílej: