Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,2 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,42 %. Procesor AMD používá 66,72 % hráčů na Linuxu.
Canonical oznámil (YouTube), že nově nabízí svou podporu Ubuntu Pro také pro instance Ubuntu na WSL (Windows Subsystem for Linux).
Samsung představil svůj nejnovější chytrý telefon Galaxy Z TriFold (YouTube). Skládačka se nerozkládá jednou, ale hned dvakrát, a nabízí displej s úhlopříčkou 10 palců. V České republice nebude tento model dostupný.
Armbian, tj. linuxová distribuce založená na Debianu a Ubuntu optimalizovaná pro jednodeskové počítače na platformě ARM a RISC-V, ke stažení ale také pro Intel a AMD, byl vydán ve verzi 25.11.1. Přehled novinek v Changelogu.
Byla vydána nová verze 15.0 svobodného unixového operačního systému FreeBSD. Podrobný přehled novinek v poznámkách k vydání.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04 1.1 a 20.04 OTA-11. Vedle oprav chyb a drobných vylepšení je řešen také středně závažný bezpečnostní problém.
I letos vyšla řada ajťáckých adventních kalendářů: Advent of Code 2025, Perl Advent Calendar 2025, CSS Advent Calendar 2025, Advent of A11Y 2025, Advent of AI Security 2025, Advent of Agents (in Google) 2025, Advent of Svelte 2025, …
Fedora zve na dvoudenní testování (2. a 3. prosince), během kterého si můžete vyzkoušet nové webové uživatelské rozhraní (WebUI) projektu FreeIPA. Pomozte vychytat veškeré chyby a vylepšit uživatelskou zkušenost ještě předtím, než se tato verze dostane k uživatelům Fedory a celého linuxového ekosystému.
Eben Upton oznámil zdražení počítačů Raspberry Pi, kvůli růstu cen pamětí, a představil 1GB verzi Raspberry Pi 5 za 45 dolarů.
Linus Torvalds na YouTube kanálu Linus Tech Tips staví dokonalý linuxový počítač.
For me the greatest beauty always lies in the greatest clarity.
V tomto zápisku si ukážeme jednu užitečnou schopnost Emacs módu pro jazyk Agda. Jedná se o automatické napsání kódu, kdy programátor pouze specifikuje, co má kód dělat, a nechá editor, aby takový kód napsal.
Naším cílem bude napsat funkci zap. zap dostane seznam funkcí a stejně dlouhý seznam prvků a na každý prvek aplikuje
odpovídající funkci. Například výsledkem zap (suc ∷ suc ∷ id ∷ (suc ∘ suc) ∷ []) (1 ∷ 2 ∷ 3 ∷ 4 ∷ []) bude seznam 2 ∷ 3 ∷ 3 ∷ 6 ∷ []. Pro pořádek doplňme, že suc x je číslo o jedna větší než x (od slova successor), id je identita, ∘ značí skládání funkcí, ∷ značí cons (dostane prvek a seznam a zkonstruuje nový seznam, který začíná daným prvkem a pokračuje daným seznamem) a [] značí prázdný seznam (například 0 ∷ [] je seznam obsahující číslo 0).
Jazyk Agda je minimalistický – čísla ani seznamy nejsou jeho součástí, tudíž aby fungoval příklad uvedený výše,
budeme muset napsat funkce id, ∘ a zap a definovat datový typ pro přirozená čísla ℕ a datové typy pro seznamy Vec.
Začneme identitou – funkcí, která vrátí to, co dostane. Napíšeme typ, levou stranu funkce a místo pravé strany dáme otazník (kód, který patří místo otazníku, bude doplněn automaticky):
id : {A : Set} → A → A
id x = ?
Funkce má dva parametry – množinu a její prvek. Složené závorky kolem prvního parametru
značí, že se jedná o implicitní parametr – kompilátor se pokusí doplnit argument automaticky.
Nyní Emacs požádáme, aby doplnil kód. Nejprve použijeme příkaz Load (C-c C-l), ten provede
zvýraznění kódu a otazník změní na chlívek { }0 vymezený složenými závorkami (mezi složené závorky jde psát).
Chlívek můžeme chápat jako díru ve zdrojovém kódu, kterou je třeba vyplnit.
Chlívky jsou očíslovány (náš má číslo 0) a lze se mezi nimi pohybovat pomocí příkazů Next Goal (C-c C-f) a Previous Goal (C-c C-b).
Když je kurzor v chlívku, lze použít příkaz Auto (C-c C-a) a Emacs se pokusí napsat kód automaticky.
V tomto případě Emacs automaticky napíše x:
id : {A : Set} → A → A
id x = x
Tento příklad pravděpodobně člověka na zadek neposadí, zkusme skládání funkcí. Postup je stejný. Napíšeme typ, levou stranu funkce a místo pravé strany dáme otazník:
_∘_ : {A B C : Set} → (B → C) → (A → B) → (A → C)
g ∘ f = ?
Podtržítka v názvu funkce _∘_ značí místa, kam přijdou argumenty (například if—then—else lze definovat jako funkci if_then_else_ se třemi parametry).
∘ pro skládání funkcí má tři implicitní parametry. Nyní požádáme Emacs o doplnění kódu (příkaz Load, přesun do vzniklého chlívku, příkaz Auto) a dostaneme:
_∘_ : {A B C : Set} → (B → C) → (A → B) → (A → C)
g ∘ f = λ z → g (f z)
Emacs doplnil λ z → g (f z). Tohle už je zajímavajší, ne?
Vec budou seznamy opatřené délkou (součástí typu bude i délka seznamu). Délku budeme reprezentovat přirozeným číslem.
Napřed tedy nadefinujeme množinu přirozených čísel:
data ℕ : Set where zero : ℕ suc : ℕ → ℕ
Význam definice:
ℕ je nejmenší množina pro níž platí“.ℕ obsahuje zero“ (rozuměj: nula je přirozené číslo).ℕ prvek n, pak také obsahuje prvek suc n“
(rozuměj: je-li n přirozené číslo, pak i n + 1 je přirozené číslo).Přirozená čísla 0, 1, 2, 3 pak zapisujeme zero, suc zero, suc (suc zero), suc (suc (suc zero))
Abychom mohli používat známý zápis v desítkové soustavě, řekneme Agdě následující:
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
Zápisem 2 pak Agda bude rozumět suc (suc zero).
Nyní můžeme zadefinovat seznamy s délkou (seznamy bez délky se často označují jako List a ty s délkou jako Vec nebo Vector).
Na rozdíl od přirozených čísel nedefinujeme jednu množinu, ale celou rodinu množin.
Pro každou množinu A a přirozené číslo n definujeme množinu seznamů
délky n s prvky z množiny A:
data Vec (A : Set) : ℕ → Set where
[] : Vec A zero
_∷_ : {n : ℕ} → A → Vec A n → Vec A (suc n)
Význam definice:
A a přirozené číslo n je Vec A n nejmenší množina pro níž platí“.[] je v množině Vec A zero“ (rozuměj: prázdný seznam patří do množiny seznamů délky nula).x prvek z množiny A a xs je seznam délky n nad množinou A, tak x ∷ xs je seznam délky n + 1 nad množinou A“.Aby se ∷ parsoval jako doprava asociativní, je třeba přidat následující řádek:
infixr 5 _∷_
Konečně můžeme definovat funkci zap. Budeme postupovat stejně jako v předchozích případech.
Napíšeme typ funkce, levou stranu a místo pravé strany dáme otazník:
zap : {A B : Set} {n : ℕ} → Vec (A → B) n → Vec A n → Vec B n
zap fs xs = ?
Příkazem Load vytvoříme chlívek. Když bychom nyní zajeli kurzorem do chlívku a použili příkaz
Auto, doplnění kódu se nepodaří. Funkci je třeba definovat rozborem případů a to standardně
Auto nedělá. Do chlívku je třeba napsat -c, což povolí rozbor případů (case split)
a nyní můžeme použít příkaz Auto a Emacs napíše
zap : {A B : Set} {n : ℕ} → Vec (A → B) n → Vec A n → Vec B n
zap [] xs = []
zap (x ∷ x₁) (x₂ ∷ x₃) = x x₂ ∷ zap x₁ x₃
Kód je v pořádku až na pojmenování proměnných, to už musíme opravit ručně:
zap : {A B : Set} {n : ℕ} → Vec (A → B) n → Vec A n → Vec B n
zap [] _ = []
zap (f ∷ fs) (x ∷ xs) = f x ∷ zap fs xs
Všimněte si, že v definici funkce chybí případ, kdy je
seznam funkcí prázdný a seznam prvků neprázdný.
Důvodem je, že typ funkce zap říká, že všechny seznamy mají délku n (jsou tedy stejně dlouhé).
Drobná potíž je, že ne vždy příkaz Auto najde program, který požadujeme.
Ukážeme si to na příkladu s funkcí not, která by měla negovat
booleovskou hodnotu. Protože Agda neobsahuje typ Bool, musíme ho napřed zadefinovat:
data Bool : Set where true : Bool false : Bool
Nyní můžeme chtít napsat funkci not:
not : Bool → Bool not x = ?
Po využití příkazu Auto dostaneme:
not : Bool → Bool not x = xTo je ale špatně, chtěli jsme:
not : Bool → Bool not true = false not false = trueDalší informace o příkazu Auto je možné najít na stránkách Agdy. Na závěr můžeme pomocí příkazu Evaluate term to normal form (C-c C-n) vyzkoušet, zda
zap funguje. A opravdu, po stisku kláves C-c C-n a zadání zap (suc ∷ suc ∷ id ∷ (suc ∘ suc) ∷ []) (1 ∷ 2 ∷ 3 ∷ 4 ∷ []) dostaneme výsledek 2 ∷ 3 ∷ 3 ∷ 6 ∷ [].
Tiskni
Sdílej:
Bez lidske inteligence si nemuze poradit ani s takovou trivialitou jako je treba odvozeni funkce (operatoru) nerovnosti:
-- nejprve operator ekvivalence
(==) :: Eq a => a -> a -> Bool
-- nerovnost ?
(/=) ? Eq a => a -> a -> Bool
-- error: cannot infer
-- musi natukat clovek
x /= y == not (x == y)
-- a je to :)
x /= y = not (x == y)
Bez lidske inteligence si nemuze poradit ani s takovou trivialitou jako je treba odvozeni funkce (operatoru) nerovnosti:
Docela mě překvapuje, že to nevrátí třeba x /= y = True.
Příkaz Auto zvládne doplnit i složitější výrazy. Například return a bind pro stavovou monádu doplní takto:
record Pair (A B : Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B
record State (S A : Set) : Set where
constructor state
field
runState : S → Pair S A
-- vygenerovane prikazem Auto
return : {S A : Set} → A → State S A
return x = state (λ z → z , x)
-- vygenerovane prikazem Auto (a spatne)
bind : {S A B : Set} → State S A → (A → State S B) → State S B
bind m f = state
(λ z →
z ,
Pair.proj₂
(State.runState (f (Pair.proj₂ (State.runState m z))) z))
bind je bohužel špatně – typ totiž nezakazuje použití původního stavu. Když ale umožním, aby se typ stavu měnil (pak už to není monáda), tak Auto vygeneruje již korektní definici i pro bind:
record IState (S₁ S₂ A : Set) : Set where
constructor state
field
runState : S₁ → Pair S₂ A
-- vygenerovane prikazem Auto
ibind : {S₁ S₂ S₃ A B : Set} → IState S₁ S₂ A → (A → IState S₂ S₃ B) → IState S₁ S₃ B
ibind m f = state
(λ z →
Pair.proj₁
(IState.runState (f (Pair.proj₂ (IState.runState m z)))
(Pair.proj₁ (IState.runState m z)))
,
Pair.proj₂
(IState.runState (f (Pair.proj₂ (IState.runState m z)))
(Pair.proj₁ (IState.runState m z))))
Nicméně perfektní to není – některé výrazy se tam zbytečně opakují, člověk by napsal:
-- napsane clovekem
ibind' : {S₁ S₂ S₃ A B : Set} → IState S₁ S₂ A → (A → IState S₂ S₃ B) → IState S₁ S₃ B
ibind' m f = state
(λ st₁ →
let (st₂ , a) = IState.runState m st₁
in IState.runState (f a) st₂)
IMHO to ale moc prakticky neni.Hodí se to v důkazech. Tam potřebuji najít term s daným typem a už příliš nezáleží na tom, jak ten term vypadá.
Bez Vimu si jiz nedokazi predstavit svuj zivot 
Ale ten Emacs ma spousty zajimavych funkci a doplnku, ktere bych rad pouzival a ve svete vimu jsou nedokonale imitovane. Napr. org mod a velmi kvalitni integrace REPLu funkcionalnich jazyku. No uvidim, treba se nekdy hacknu.
Hm, moc tomu nerozumim
Máte nějaký konkrétní dotaz, třeba bych mohl pomoci?
Mně se na Agdě a podobných jazycích líbí minimalističnost kombinovaná se silou typového systému. Naopak mi vadí absence aktuální definice jazyka – bylo by super, kdyby někdo zpracoval definici na úrovni Standard ML (viz stará verze: The Definition of Standard ML - Version 2).
Hlavní využití příkazu Auto je při hledání důkazů – tam totiž jde pouze o nalezení termu s odpovídajícím typem a je jedno, jak ten term vypadá. Je tohle odpověď na vaši otázku?
int f(int a, int b)a editor me k tomu doplnil:
{
return a + b;
}
i kdyz jsem mohl chtit odcitani, nasobeni, nebo neco slozitejsiho?
i kdyz jsem mohl chtit odcitani, nasobeni, nebo neco slozitejsiho?
Přesně tak. Například, když chci odčítání a použiji typ
binop₁ : ℕ → ℕ → ℕ
tak dostanu
binop₁ a b = b
což není odčítání. Musím tedy upřesnit typ:
binop₂ : (x : ℕ) → (y : ℕ) → Pair ℕ (minus_pred x y)
Místo pouhého čísla vracím dvojici. První prvek dvojice je číslo a druhý prvek je důkaz, že první prvek je rozdíl x a y. Odečítání definuji následovně:
_∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ _ = zero suc m ∸ suc n = m ∸ n
Rovnost vyjadřuji pomocí následujícího typu. Typ je navržen tak, že term refl typu a ≡ b jde zkonstruovat pouze tehdy, jsou-li a a b stejné:
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
Následuje definice závislého páru, kde typ druhé složky závisí na hodnotě první složky:
record Pair (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
Nastavení parseru:
infixl 6 _∸_ infix 4 _≡_ _,_
Funkce vracející typ (tj. výrok), že rozdíl prvních dvou čísel je roven třetímu číslu:
minus_pred : ℕ → ℕ → ℕ → Set minus_pred x y res = x ∸ y ≡ res
Pro tento typ už příkaz Auto vygeneruje požadovanou funkci:
binop₂ : (x : ℕ) → (y : ℕ) → Pair ℕ (minus_pred x y) binop₂ a b = a ∸ b , refl
Myslím, že neuniká. V ničem to není lepší. Je to jen příklad, že vlastnost výsledku funkce jde specifikovat typem. V tomto případě to však nemá žádné výhody – spíše naopak.
Příklad praktického použití je třeba funkce, která transformuje program a kde chceme, aby výsledný program dával stejné výsledky jako původní program.
Příklad praktického použití je třeba funkce, která transformuje program a kde chceme, aby výsledný program dával stejné výsledky jako původní program.Tohle větou jsi měl celý článek uvést
Vygenerovalo by to neco i kdybych nenadefinoval operator _-_ a minus_pred definoval jinym zpusobem - treba pomoci scitani?
Nejspíš ne.
Konkrétně, pokud máte na mysli podobnou definici
minus_pred : ℕ → ℕ → ℕ → Set minus_pred x y res = y + res ≡ x
tak ne. Problém je v tom, že pro x < y neexistuje přirozené číslo res a Auto hledá totální funkci (všude definovanou).
Kdybych zadefinoval relaci ≥ a funkci binop₂ definoval pouze pro x ≥ y, tak by to stejně nenašel – je to už příliš složité. Nezkoušel jsem to, ale myslím, že by se muselo nadefinovat ∸, pak dokázat lemma, že z x ≥ y a x ∸ y ≡ res plyne y + res ≡ x, a pak by to našel (ale to už není příliš zajímavé, protože je to vlastně celé hotové).