Byla vydána (Mastodon, 𝕏) první RC verze GIMPu 3.2. Přehled novinek v oznámení o vydání. Podrobně v souboru NEWS na GitLabu.
Eugen Rochko, zakladatel Mastodonu, tj. sociální sítě, která není na prodej, oznámil, že po téměř 10 letech odstupuje z pozice CEO a převádí vlastnictví ochranné známky a dalších aktiv na neziskovou organizaci Mastodon.
Byla vydána nová major verze 5.0 svobodného 3D softwaru Blender. Přehled novinek i s náhledy a videi v obsáhlých poznámkách k vydání. Videopředstavení na YouTube.
Cloudflare, tj. společnost poskytující "cloudové služby, které zajišťují bezpečnost, výkon a spolehlivost internetových aplikací", má výpadek.
Letos se uskuteční již 11. ročník soutěže v programování Kasiopea. Tato soutěž, (primárně) pro středoškoláky, nabízí skvělou příležitost procvičit logické myšlení a dozvědět se něco nového ze světa algoritmů – a to nejen pro zkušené programátory, ale i pro úplné začátečníky. Domácí kolo proběhne online od 22. 11. do 7. 12. 2025 a skládá se z 9 zajímavých úloh různé obtížnosti. Na výběru programovacího jazyka přitom nezáleží – úlohy jsou
… více »Byla vydána nová verze 2.52.0 distribuovaného systému správy verzí Git. Přispělo 94 vývojářů, z toho 33 nových. Přehled novinek v příspěvku na blogu GitHubu a v poznámkách k vydání.
VKD3D-Proton byl vydán ve verzi 3.0. Jedná se fork knihovny vkd3d z projektu Wine pro Proton. Knihovna slouží pro překlad volání Direct3D 12 na Vulkan. V přehledu novinek je vypíchnuta podpora AMD FSR 4 (AMD FidelityFX Super Resolution 4).
Poštovní klient Thunderbird byl vydán v nové verzi 145.0. Podporuje DNS přes HTTPS nebo Microsoft Exchange skrze Exchange Web Services. Ukončena byla podpora 32bitového Thunderbirdu pro Linux.
U příležitosti státního svátku 17. listopadu probíhá na Steamu i GOG.com již šestý ročník Czech & Slovak Games Week aneb týdenní oslava a také slevová akce českých a slovenských počítačových her.
Byla vydána nová verze 9.19 z Debianu vycházející linuxové distribuce DietPi pro (nejenom) jednodeskové počítače. Přehled novinek v poznámkách k vydání. Vypíchnout lze například nový balíček BirdNET-Go, tj. AI řešení pro nepřetržité monitorování a identifikaci ptáků.
Mám problém s dědičností. Mám třídu Widget. Od této třídy mám odvozenu třídu Container. Třída container obsahuje metodu addWidget( Widget *childWidget ). Problém je, že v této metodě nemohu přistupovat k chráněným proměnným třídy Widget. Tj. následující kód hází chybu:
void Container::addWidget( Widget *childWidget )
{
if(childWidget->m_pParent == 0)
{
// ...
} else {
// ...
}
}
Výstup kompilátoru:
./Toolkit/Widget.h: In member function ‘void Toolkit::Container::addWidget(Toolkit::Widget*)’: ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:35: error: within this context ./Toolkit/Widget.h:30: error: ‘GtkWidget* Toolkit::Widget::m_pWidget’ is protected ./Toolkit/Container.cpp:43: error: within this context ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:45: error: within this context
Widget proměnnou
private Widget * m_pParent;
protected Widget * m_pParent;
Container*, tak k nim přistupovat můžu, ale to je docela prasárna.
Berte to tak, že protected vám umožňuje přístup k prvkům rodiče z metod potomka, ale to se týká jen téže instance. Kromě toho mají metody třídy přístup ke všem prvkům jiných instancí téže třídy podle stejných pravidel jako ke svým vlastním, ale to se netýká jiných instancí rodičovské třídy. Takže
class B {
private:
int x;
protected:
int y;
public:
int z;
const B& operator = (const B& s);
};
class D : public B {
public:
const D& operator = (const D& s);
const D& operator = (const B& s);
};
const B& operator = (const B& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // OK
return *this;
}
const D& operator = (const D& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // chyba (na obou stranách)
return *this;
}
const D& operator = (const B& s);
{
x = s.x // OK
y = s.y // chyba (na pravé straně)
z = s.z // chyba (na obou stranách)
return *this;
}
class B {
private:
int x;
protected:
int y;
public:
int z;
const B& operator = (const B& s);
};
class D : public B {
public:
const D& operator = (const D& s);
const D& operator = (const B& s);
};
const B& B::operator = (const B& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // OK
return *this;
}
const D& D::operator = (const D& s);
{
//tohle se mi nezdá
//podle mě je chyba v x=s.x (private)
x = s.x // OK
y = s.y // OK
z = s.z // chyba (na obou stranách)
return *this;
}
const D& D::operator = (const B& s);
{
// dle toho, co jste říkal by měla být chyba
// v x=s.x a y=s.y, ne v z=s.z
x = s.x // OK
y = s.y // chyba (na pravé straně)
z = s.z // chyba (na obou stranách)
return *this;
}
To je docela naprd. Potřebuji totiž nutně nastavit tu chráněnou proměnnou a zároveň nechci, aby byla public. Kdybych si napsal chráněnou metodu třídy Widget, mohl bych ji pak zavolat? Vyzkouším to.
V tom zdrojáku máte samozřejmě pravdu, zapomněl jsem, co bylo nahoře, a dole jsem psal, jako bych to měl obráceně (tj. x public, y protected a z private).
Co se vašeho problému týká, nejjednodušší asi bude použít friend deklaraci.
class Widget{
protected:
virtual void nejakaVirtualniFce();
public:
void nejakaFce();
}
class Container{
public:
friend class Widget;
protected:
virtual void nejakaVirtualniFce();
}
void Widget::nejakaFce()
{
nejakaVirtualniFce();
}
friend pouze umožňuje přístup k protected a private prvkům instance dané třídy, ale volat metodu jiné třídy (aniž by byla použita konkrétní instance) můžete jen tehdy, je-li ta metoda static.
class Widget{
..
};
class Container: public Widget{
public:
friend class Widget;
};
Jestli ne, tak to všechno, co jsem tři dny psal můžu leda tak vyhodit.
Widget budou moci přistupovat k prvkům instancí třídy Container stejně jako metody této třídy. Ale samozřejmě jen u instancí této třídy. Takže asi takto:
class Widget {
virtual ~Widget() {}
void f();
};
class Container: public: Widget {
private:
int x;
public:
virtual ~Container() {}
friend class Widget;
};
void Widget::f()
{
Container* pc = new Container;
pc->x = 0; // OK
Widget* pw = new Widget;
pw->x = 0; // chyba
if (typeid(*this) == typeid(Container) {
x = 0; // chyba
this->x = 0; // chyba
pc = dynamic_cast<Container*>(this);
pc->x = 0; // OK
}
}
. Teď už jen poslední dotaz ohledně toho přetypování. Proč dynamic_cast<Container*>(this)? Jak se to liší od (Container*)(this)?
dynamic_cast<T*>(p) umožňuje přetypovat pouze pokud
T je void
T je rodič typu *p
T je potomek typu *p (compile-time kontrola) a *p je instance typu T nebo některého jejího potomka (run-time kontrola); to ale pouze za předpokladu, že dědičnost je polymorfní, tj. ty třídy mají aspoň jednu virtuální metodudynamic_cast i pro reference.
dynamic_cast je bezpečnější v tom, že snižuje riziko, že přetypujete pointer na něco, čím není.
Tiskni
Sdílej: