Organizace Open Container Initiative (OCI) (Wikipedie), projekt nadace Linux Foundation, vydala Runtime Specification 1.3 (pdf), tj. novou verzi specifikace kontejnerového běhového prostředí. Hlavní novinkou je podpora FreeBSD.
Nový open source router Turris Omnia NG je v prodeji. Aktuálně na Allegro, Alternetivo, Discomp, i4wifi a WiFiShop.
Na YouTube a nově také na VHSky byly zveřejněny sestříhané videozáznamy přednášek z letošního OpenAltu.
Jednou za rok otevírá společnost SUSE dveře svých kanceláří široké veřejnosti. Letos je pro vás otevře 26. listopadu v 16 hodin v pražském Karlíně. Vítáni jsou všichni, kdo se chtějí dozvědět více o práci vývojářů, prostředí ve kterém pracují a o místní firemní kultuře. Můžete se těšit na krátké prezentace, které vám přiblíží, na čem inženýři v Praze pracují, jak spolupracují se zákazníky, partnery i studenty, proč mají rádi open source a co
… více »Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za říjen (YouTube).
Jeff Quast otestoval současné emulátory terminálu. Zaměřil se na podporu Unicode a výkon. Vítězným emulátorem terminálu je Ghostty.
Amazon bude poskytovat cloudové služby OpenAI. Cloudová divize Amazon Web Services (AWS) uzavřela s OpenAI víceletou smlouvu za 38 miliard USD (803,1 miliardy Kč), která poskytne majiteli chatovacího robota s umělou inteligencí (AI) ChatGPT přístup ke stovkám tisíc grafických procesů Nvidia. Ty bude moci využívat k trénování a provozování svých modelů AI. Firmy to oznámily v dnešní tiskové zprávě. Společnost OpenAI také nedávno
… více »Konference Prague PostgreSQL Developer Day 2026 (P2D2) se koná 27. a 28. ledna 2026. Konference je zaměřena na témata zajímavá pro uživatele a vývojáře. Příjem přednášek a workshopů je otevřen do 14. listopadu. Vítáme témata související s PostgreSQL či s databázemi obecně, a mohou být v češtině či angličtině.
Byl vydán Devuan 6 Excalibur. Přehled novinek v poznámkách k vydání. Kódové jméno Excalibur bylo vybráno podle planetky 9499 Excalibur. Devuan (Wikipedie) je fork Debianu bez systemd. Devuan 6 Excalibur vychází z Debianu 13 Trixie. Devuan 7 ponese kódové jméno Freia.
Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu poprvé překročil 3 %, aktuálně 3,05 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 27,18 %. Procesor AMD používá 67,10 % hráčů na Linuxu.
Mám problém s dědičností. Mám třídu Widget. Od této třídy mám odvozenu třídu Container. Třída container obsahuje metodu addWidget( Widget *childWidget ). Problém je, že v této metodě nemohu přistupovat k chráněným proměnným třídy Widget. Tj. následující kód hází chybu:
void Container::addWidget( Widget *childWidget )
{
if(childWidget->m_pParent == 0)
{
// ...
} else {
// ...
}
}
Výstup kompilátoru:
./Toolkit/Widget.h: In member function ‘void Toolkit::Container::addWidget(Toolkit::Widget*)’: ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:35: error: within this context ./Toolkit/Widget.h:30: error: ‘GtkWidget* Toolkit::Widget::m_pWidget’ is protected ./Toolkit/Container.cpp:43: error: within this context ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:45: error: within this context
Widget proměnnou
private Widget * m_pParent;
protected Widget * m_pParent;
Container*, tak k nim přistupovat můžu, ale to je docela prasárna.
Berte to tak, že protected vám umožňuje přístup k prvkům rodiče z metod potomka, ale to se týká jen téže instance. Kromě toho mají metody třídy přístup ke všem prvkům jiných instancí téže třídy podle stejných pravidel jako ke svým vlastním, ale to se netýká jiných instancí rodičovské třídy. Takže
class B {
private:
int x;
protected:
int y;
public:
int z;
const B& operator = (const B& s);
};
class D : public B {
public:
const D& operator = (const D& s);
const D& operator = (const B& s);
};
const B& operator = (const B& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // OK
return *this;
}
const D& operator = (const D& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // chyba (na obou stranách)
return *this;
}
const D& operator = (const B& s);
{
x = s.x // OK
y = s.y // chyba (na pravé straně)
z = s.z // chyba (na obou stranách)
return *this;
}
class B {
private:
int x;
protected:
int y;
public:
int z;
const B& operator = (const B& s);
};
class D : public B {
public:
const D& operator = (const D& s);
const D& operator = (const B& s);
};
const B& B::operator = (const B& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // OK
return *this;
}
const D& D::operator = (const D& s);
{
//tohle se mi nezdá
//podle mě je chyba v x=s.x (private)
x = s.x // OK
y = s.y // OK
z = s.z // chyba (na obou stranách)
return *this;
}
const D& D::operator = (const B& s);
{
// dle toho, co jste říkal by měla být chyba
// v x=s.x a y=s.y, ne v z=s.z
x = s.x // OK
y = s.y // chyba (na pravé straně)
z = s.z // chyba (na obou stranách)
return *this;
}
To je docela naprd. Potřebuji totiž nutně nastavit tu chráněnou proměnnou a zároveň nechci, aby byla public. Kdybych si napsal chráněnou metodu třídy Widget, mohl bych ji pak zavolat? Vyzkouším to.
V tom zdrojáku máte samozřejmě pravdu, zapomněl jsem, co bylo nahoře, a dole jsem psal, jako bych to měl obráceně (tj. x public, y protected a z private).
Co se vašeho problému týká, nejjednodušší asi bude použít friend deklaraci.
class Widget{
protected:
virtual void nejakaVirtualniFce();
public:
void nejakaFce();
}
class Container{
public:
friend class Widget;
protected:
virtual void nejakaVirtualniFce();
}
void Widget::nejakaFce()
{
nejakaVirtualniFce();
}
friend pouze umožňuje přístup k protected a private prvkům instance dané třídy, ale volat metodu jiné třídy (aniž by byla použita konkrétní instance) můžete jen tehdy, je-li ta metoda static.
class Widget{
..
};
class Container: public Widget{
public:
friend class Widget;
};
Jestli ne, tak to všechno, co jsem tři dny psal můžu leda tak vyhodit.
Widget budou moci přistupovat k prvkům instancí třídy Container stejně jako metody této třídy. Ale samozřejmě jen u instancí této třídy. Takže asi takto:
class Widget {
virtual ~Widget() {}
void f();
};
class Container: public: Widget {
private:
int x;
public:
virtual ~Container() {}
friend class Widget;
};
void Widget::f()
{
Container* pc = new Container;
pc->x = 0; // OK
Widget* pw = new Widget;
pw->x = 0; // chyba
if (typeid(*this) == typeid(Container) {
x = 0; // chyba
this->x = 0; // chyba
pc = dynamic_cast<Container*>(this);
pc->x = 0; // OK
}
}
. Teď už jen poslední dotaz ohledně toho přetypování. Proč dynamic_cast<Container*>(this)? Jak se to liší od (Container*)(this)?
dynamic_cast<T*>(p) umožňuje přetypovat pouze pokud
T je void
T je rodič typu *p
T je potomek typu *p (compile-time kontrola) a *p je instance typu T nebo některého jejího potomka (run-time kontrola); to ale pouze za předpokladu, že dědičnost je polymorfní, tj. ty třídy mají aspoň jednu virtuální metodudynamic_cast i pro reference.
dynamic_cast je bezpečnější v tom, že snižuje riziko, že přetypujete pointer na něco, čím není.
Tiskni
Sdílej: