Byla vydána nová verze 4.6 (𝕏, Bluesky, Mastodon) multiplatformního open source herního enginu Godot (Wikipedie, GitHub). Přehled novinek i s náhledy v příspěvku na blogu.
Rozsáhlá modernizace hardwarové infrastruktury Základních registrů měla zabránit výpadkům digitálních služeb státu. Dnešnímu výpadku nezabránila.
Čínský startup Kimi představil open-source model umělé inteligence Kimi K2.5. Nová verze pracuje s textem i obrázky a poskytuje 'paradigma samosměřovaného roje agentů' pro rychlejší vykonávání úkolů. Kimi zdůrazňuje vylepšenou schopnost modelu vytvářet zdrojové kódy přímo z přirozeného jazyka. Natrénovaný model je dostupný na Hugging Face, trénovací skripty však ne. Model má 1 T (bilion) parametrů, 32 B (miliard) aktivních.
V Raspberry Pi OS lze nově snadno povolit USB Gadget Mode a díky balíčku rpi-usb-gadget (CDC-ECM/RNDIS) mít možnost se k Raspberry Pi připojovat přes USB kabel bez nutnosti konfigurování Wi-Fi nebo Ethernetu. K podporovaným Raspberry Pi připojeným do USB portu podporujícího OTG.
Konference Installfest 2026 proběhne o víkendu 28. a 29. března v budově FELu na Karlově náměstí v Praze. Přihlásit přednášku nebo workshop týkající se Linuxu, otevřených technologií, sítí, bezpečnosti, vývoje, programování a podobně lze do 18. února 0:15.
Fedora Flock 2026, tj. konference pro přispěvatele a příznivce Fedory, bude opět v Praze. Proběhne od 14. do 16. června. Na Flock navazuje DevConf.CZ 2026, který se uskuteční 18. a 19. června v Brně. Organizátoři konferencí hledají přednášející, vyhlásili Call for Proposals (CfP).
Z80-μLM je jazykový model 'konverzační umělé inteligence' optimalizovaný pro běh na 8-bitovém 4Mhz procesoru Z80 s 64kB RAM, technologii z roku 1976. Model používá 2-bitovou kvantizaci a trigramové hashování do 128 položek, což umožňuje zpracování textu i při velmi omezené paměti. Natrénovaný model se vejde do binárního souboru velkého pouhých 40 KB. Tento jazykový model patrně neprojde Turingovým testem 😅.
Digitální a informační agentura (DIA) na přelomu roku dokončila rozsáhlou modernizaci hardwarové infrastruktury základních registrů. Projekt za 236 milionů korun by měl zabránit výpadkům digitálních služeb státu, tak jako při loňských parlamentních volbách. Základní registry, tedy Registr práv a povinností (RPP), Informační systém základních registrů (ISZR) a Registr obyvatel (ROB), jsou jedním z pilířů veřejné správy. Denně
… více »Evropská komise (EK) zahájila nové vyšetřování americké internetové platformy 𝕏 miliardáře Elona Muska, a to podle unijního nařízení o digitálních službách (DSA). Vyšetřování souvisí se skandálem, kdy chatbot s umělou inteligencí (AI) Grok na žádost uživatelů na síti 𝕏 generoval sexualizované fotografie žen a dětí. Komise o tom dnes informovala ve svém sdělení. Americký podnik je podezřelý, že řádně neposoudil a nezmírnil rizika spojená se zavedením své umělé inteligence na on-line platformě.
Bratislava OpenCamp pokračuje vo svojej tradícii a fanúšikovia otvorených technológií sa môžu tešiť na 4. ročník, ktorý sa uskutoční 25. 4. 2026 na FIIT STU v Bratislave. V súčasnosti prebieha prihlasovanie prednášok a workshopov – ak máte nápad, projekt, myšlienku, o ktoré sa chcete podeliť s komunitou, OpenCamp je správne miesto pre vás.
Mám problém s dědičností. Mám třídu Widget. Od této třídy mám odvozenu třídu Container. Třída container obsahuje metodu addWidget( Widget *childWidget ). Problém je, že v této metodě nemohu přistupovat k chráněným proměnným třídy Widget. Tj. následující kód hází chybu:
void Container::addWidget( Widget *childWidget )
{
if(childWidget->m_pParent == 0)
{
// ...
} else {
// ...
}
}
Výstup kompilátoru:
./Toolkit/Widget.h: In member function ‘void Toolkit::Container::addWidget(Toolkit::Widget*)’: ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:35: error: within this context ./Toolkit/Widget.h:30: error: ‘GtkWidget* Toolkit::Widget::m_pWidget’ is protected ./Toolkit/Container.cpp:43: error: within this context ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:45: error: within this context
Widget proměnnou
private Widget * m_pParent;
protected Widget * m_pParent;
Container*, tak k nim přistupovat můžu, ale to je docela prasárna.
Berte to tak, že protected vám umožňuje přístup k prvkům rodiče z metod potomka, ale to se týká jen téže instance. Kromě toho mají metody třídy přístup ke všem prvkům jiných instancí téže třídy podle stejných pravidel jako ke svým vlastním, ale to se netýká jiných instancí rodičovské třídy. Takže
class B {
private:
int x;
protected:
int y;
public:
int z;
const B& operator = (const B& s);
};
class D : public B {
public:
const D& operator = (const D& s);
const D& operator = (const B& s);
};
const B& operator = (const B& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // OK
return *this;
}
const D& operator = (const D& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // chyba (na obou stranách)
return *this;
}
const D& operator = (const B& s);
{
x = s.x // OK
y = s.y // chyba (na pravé straně)
z = s.z // chyba (na obou stranách)
return *this;
}
class B {
private:
int x;
protected:
int y;
public:
int z;
const B& operator = (const B& s);
};
class D : public B {
public:
const D& operator = (const D& s);
const D& operator = (const B& s);
};
const B& B::operator = (const B& s);
{
x = s.x // OK
y = s.y // OK
z = s.z // OK
return *this;
}
const D& D::operator = (const D& s);
{
//tohle se mi nezdá
//podle mě je chyba v x=s.x (private)
x = s.x // OK
y = s.y // OK
z = s.z // chyba (na obou stranách)
return *this;
}
const D& D::operator = (const B& s);
{
// dle toho, co jste říkal by měla být chyba
// v x=s.x a y=s.y, ne v z=s.z
x = s.x // OK
y = s.y // chyba (na pravé straně)
z = s.z // chyba (na obou stranách)
return *this;
}
To je docela naprd. Potřebuji totiž nutně nastavit tu chráněnou proměnnou a zároveň nechci, aby byla public. Kdybych si napsal chráněnou metodu třídy Widget, mohl bych ji pak zavolat? Vyzkouším to.
V tom zdrojáku máte samozřejmě pravdu, zapomněl jsem, co bylo nahoře, a dole jsem psal, jako bych to měl obráceně (tj. x public, y protected a z private).
Co se vašeho problému týká, nejjednodušší asi bude použít friend deklaraci.
class Widget{
protected:
virtual void nejakaVirtualniFce();
public:
void nejakaFce();
}
class Container{
public:
friend class Widget;
protected:
virtual void nejakaVirtualniFce();
}
void Widget::nejakaFce()
{
nejakaVirtualniFce();
}
friend pouze umožňuje přístup k protected a private prvkům instance dané třídy, ale volat metodu jiné třídy (aniž by byla použita konkrétní instance) můžete jen tehdy, je-li ta metoda static.
class Widget{
..
};
class Container: public Widget{
public:
friend class Widget;
};
Jestli ne, tak to všechno, co jsem tři dny psal můžu leda tak vyhodit.
Widget budou moci přistupovat k prvkům instancí třídy Container stejně jako metody této třídy. Ale samozřejmě jen u instancí této třídy. Takže asi takto:
class Widget {
virtual ~Widget() {}
void f();
};
class Container: public: Widget {
private:
int x;
public:
virtual ~Container() {}
friend class Widget;
};
void Widget::f()
{
Container* pc = new Container;
pc->x = 0; // OK
Widget* pw = new Widget;
pw->x = 0; // chyba
if (typeid(*this) == typeid(Container) {
x = 0; // chyba
this->x = 0; // chyba
pc = dynamic_cast<Container*>(this);
pc->x = 0; // OK
}
}
. Teď už jen poslední dotaz ohledně toho přetypování. Proč dynamic_cast<Container*>(this)? Jak se to liší od (Container*)(this)?
dynamic_cast<T*>(p) umožňuje přetypovat pouze pokud
T je void
T je rodič typu *p
T je potomek typu *p (compile-time kontrola) a *p je instance typu T nebo některého jejího potomka (run-time kontrola); to ale pouze za předpokladu, že dědičnost je polymorfní, tj. ty třídy mají aspoň jednu virtuální metodudynamic_cast i pro reference.
dynamic_cast je bezpečnější v tom, že snižuje riziko, že přetypujete pointer na něco, čím není.
Tiskni
Sdílej: