Dlouholetý balíčkář KDE Jonathan Riddell končí. Jeho práci na KDE neon financovala firma Blue Systems, která ale končí (Clemens Tönnies, Jr., dědic jatek Tönnies Holding, ji už nebude sponzorovat), někteří vývojáři KDE se přesunuli k nově založené firmě Techpaladin. Pro Riddella se již nenašlo místo. Následovala debata o organizaci těchto firem, které zahraniční vývojáře nezaměstnávají, nýbrž najímají jako kontraktory (s příslušnými důsledky z pohledu pracovního práva).
V Amsterdamu probíhá Blender Conference 2025. Videozáznamy přednášek lze zhlédnout na YouTube. V úvodní keynote Ton Roosendaal oznámil, že k 1. lednu 2026 skončí jako chairman a CEO Blender Foundation. Tyto role převezme současný COO Blender Foundation Francesco Siddi.
The Document Foundation, organizace zastřešující projekt LibreOffice a další aktivity, zveřejnila výroční zprávu za rok 2024.
Byla vydána nová stabilní verze 7.6 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 140. Přehled novinek i s náhledy v příspěvku na blogu.
Byla vydána verze 1.90.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
GNUnet (Wikipedie) byl vydán v nové major verzi 0.25.0. Jedná se o framework pro decentralizované peer-to-peer síťování, na kterém je postavena řada aplikací.
Byla vydána nová major verze 7.0 živé linuxové distribuce Tails (The Amnesic Incognito Live System), jež klade důraz na ochranu soukromí uživatelů a anonymitu. Nově je postavena je na Debianu 13 (Trixie) a GNOME 48 (Bengaluru). Další novinky v příslušném seznamu.
Společnost Meta na dvoudenní konferenci Meta Connect 2025 představuje své novinky. První den byly představeny nové AI brýle: Ray-Ban Meta (Gen 2), sportovní Oakley Meta Vanguard a především Meta Ray-Ban Display s integrovaným displejem a EMG náramkem pro ovládání.
Po půl roce vývoje od vydání verze 48 bylo vydáno GNOME 49 s kódovým názvem Brescia (Mastodon). S přehrávačem videí Showtime místo Totemu a prohlížečem dokumentů Papers místo Evince. Podrobný přehled novinek i s náhledy v poznámkách k vydání a v novinkách pro vývojáře.
Open source softwarový stack ROCm (Wikipedie) pro vývoj AI a HPC na GPU od AMD byl vydán ve verzi 7.0.0. Přidána byla podpora AMD Instinct MI355X a MI350X.
addWidget( Widget *childWidget )
. Problém je, že v této metodě nemohu přistupovat k chráněným proměnným třídy Widget. Tj. následující kód hází chybu:
void Container::addWidget( Widget *childWidget ) { if(childWidget->m_pParent == 0) { // ... } else { // ... } }Výstup kompilátoru:
./Toolkit/Widget.h: In member function ‘void Toolkit::Container::addWidget(Toolkit::Widget*)’: ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:35: error: within this context ./Toolkit/Widget.h:30: error: ‘GtkWidget* Toolkit::Widget::m_pWidget’ is protected ./Toolkit/Container.cpp:43: error: within this context ./Toolkit/Widget.h:31: error: ‘Toolkit::Widget* Toolkit::Widget::m_pParent’ is protected ./Toolkit/Container.cpp:45: error: within this context
Widget
proměnnou
private Widget * m_pParent;
protected Widget * m_pParent;
Container*
, tak k nim přistupovat můžu, ale to je docela prasárna.
Berte to tak, že protected
vám umožňuje přístup k prvkům rodiče z metod potomka, ale to se týká jen téže instance. Kromě toho mají metody třídy přístup ke všem prvkům jiných instancí téže třídy podle stejných pravidel jako ke svým vlastním, ale to se netýká jiných instancí rodičovské třídy. Takže
class B { private: int x; protected: int y; public: int z; const B& operator = (const B& s); }; class D : public B { public: const D& operator = (const D& s); const D& operator = (const B& s); }; const B& operator = (const B& s); { x = s.x // OK y = s.y // OK z = s.z // OK return *this; } const D& operator = (const D& s); { x = s.x // OK y = s.y // OK z = s.z // chyba (na obou stranách) return *this; } const D& operator = (const B& s); { x = s.x // OK y = s.y // chyba (na pravé straně) z = s.z // chyba (na obou stranách) return *this; }
class B { private: int x; protected: int y; public: int z; const B& operator = (const B& s); }; class D : public B { public: const D& operator = (const D& s); const D& operator = (const B& s); }; const B& B::operator = (const B& s); { x = s.x // OK y = s.y // OK z = s.z // OK return *this; } const D& D::operator = (const D& s); { //tohle se mi nezdá //podle mě je chyba v x=s.x (private) x = s.x // OK y = s.y // OK z = s.z // chyba (na obou stranách) return *this; } const D& D::operator = (const B& s); { // dle toho, co jste říkal by měla být chyba // v x=s.x a y=s.y, ne v z=s.z x = s.x // OK y = s.y // chyba (na pravé straně) z = s.z // chyba (na obou stranách) return *this; }To je docela naprd. Potřebuji totiž nutně nastavit tu chráněnou proměnnou a zároveň nechci, aby byla public. Kdybych si napsal chráněnou metodu třídy Widget, mohl bych ji pak zavolat? Vyzkouším to.
V tom zdrojáku máte samozřejmě pravdu, zapomněl jsem, co bylo nahoře, a dole jsem psal, jako bych to měl obráceně (tj. x
public, y
protected a z
private).
Co se vašeho problému týká, nejjednodušší asi bude použít friend
deklaraci.
class Widget{ protected: virtual void nejakaVirtualniFce(); public: void nejakaFce(); } class Container{ public: friend class Widget; protected: virtual void nejakaVirtualniFce(); } void Widget::nejakaFce() { nejakaVirtualniFce(); }
friend
pouze umožňuje přístup k protected
a private
prvkům instance dané třídy, ale volat metodu jiné třídy (aniž by byla použita konkrétní instance) můžete jen tehdy, je-li ta metoda static
.
class Widget{ .. }; class Container: public Widget{ public: friend class Widget; };Jestli ne, tak to všechno, co jsem tři dny psal můžu leda tak vyhodit.
Widget
budou moci přistupovat k prvkům instancí třídy Container
stejně jako metody této třídy. Ale samozřejmě jen u instancí této třídy. Takže asi takto:
class Widget { virtual ~Widget() {} void f(); }; class Container: public: Widget { private: int x; public: virtual ~Container() {} friend class Widget; }; void Widget::f() { Container* pc = new Container; pc->x = 0; // OK Widget* pw = new Widget; pw->x = 0; // chyba if (typeid(*this) == typeid(Container) { x = 0; // chyba this->x = 0; // chyba pc = dynamic_cast<Container*>(this); pc->x = 0; // OK } }
dynamic_cast<T*>(p)
umožňuje přetypovat pouze pokud
T
je void
T
je rodič typu *p
T
je potomek typu *p
(compile-time kontrola) a *p
je instance typu T
nebo některého jejího potomka (run-time kontrola); to ale pouze za předpokladu, že dědičnost je polymorfní, tj. ty třídy mají aspoň jednu virtuální metodudynamic_cast
i pro reference.
dynamic_cast
je bezpečnější v tom, že snižuje riziko, že přetypujete pointer na něco, čím není.
Tiskni
Sdílej: