Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
Bylo oznámeno, že Qualcomm kupuje Arduino. Současně byla představena nová deska Arduino UNO Q se dvěma čipy: MPU Qualcomm Dragonwing QRB2210, na kterém může běžet Linux, a MCU STM32U585 a vývojové prostředí Arduino App Lab.
Multiplatformní open source voxelový herní engine Luanti byl vydán ve verzi 5.14.0. Podrobný přehled novinek v changelogu. Původně se jedná o Minecraftem inspirovaný Minetest v říjnu loňského roku přejmenovaný na Luanti.
Byla vydána nová stabilní verze 6.10 (YouTube) multiplatformního frameworku a GUI toolkitu Qt. Podrobný přehled novinek v poznámkách k vydání.
header()
. Pokud se už cokoli vypsalo, nepůjde to.
Obvykle je pro PHP k dispozici 32-128 MB RAM. Pokud těch dat nemáš víc, nemusíš to řešit a můžeš to udělat tak, jak ti to zrovna vyhovuje. Tak, aby se ti to dobře udržovalo. Mně víc vyhovuje naskládat data do proměnných a pak je jednou šablonou vypsat.
Zpracování celého webu: ProcessingTime: 0.00155 s. // při použití přímo echa Zpracování celého webu: ProcessingTime: 0.00820 s. // při uložení dat do proměnných s pozdějším vypsáním
Debugování kódu: půl dne // při použití přímo echa Debugování kódu: deset minut // při uložení dat do proměnných s pozdějším vypsánímpráce procesoru je daleko levnější, měl bys psát hlavně takovej kód se kterým se bude dobře pracovat tobě
práce procesoru je daleko levnější, měl bys psát hlavně takovej kód se kterým se bude dobře pracovat toběJenže hezké, krátké, a rychlé algoritmy se vzájemně nevylučují. Je dobré si předem zjistit na předpokládané množině dat, který algoritmus je efektivnější a ten používat. Od chvíle, kdy jsem zjistil, že databáze jsou rychlejší (a hlavně spolehlivější), než vlastní ukládání dat a že XSLT je daleko rychlejší než Smarty, nemám důvod používat jiné technologie.
Od chvíle, kdy jsem zjistil, že databáze jsou rychlejší (a hlavně spolehlivější), než vlastní ukládání datErm… :).
__toString()
, OB se moc použít nedá. Na druhou stranu se dá přímo použít v Heredoc, takže to zas tak pomalé není.
Pokud má mít takový overhead, že je echo() dvakrát za sebou znatelně pomalejší než vypsání toho samého najednouSkutečné odeslání dat po TCP nadvakrát má z principu overhead proti odeslání najednou. Dá se to optimalizovat, pokud bufferuješ a zároveň se dá zajistit odezva, pokud bufferuješ s nějakým časovým limitem. Tuším, že se o tom v poslední době docela dost psalo. Ale rozhodně to nemá nic společného s optimalizacemi programovacího jazyka, pokud teda nechceš, aby ti slučoval výstupní operace už na úrovni kódu. Ale to je značně netriviální operace, když si uvědomíš, že se jedná o systémové volání. Režie spojování řetězců by měla být nejmenší, pokud je spojuješ najednou. Proto se třeba v Pythonu občas optimalizuje výstup tak, že se vše ukládá do pole a to se později nechá spojit celé. Ale to samé se používá i na nejnižší úrovni, když chceš hardcore optimalizaci odeslání nesouvislého bloku dat. Stačí si najít například iovec, sendmsg a recvmsg. Ale to jsou všechno optimalizace na úrovni samotného programu a zpracování a nedají se moc dohnat automatickým optimalizérem.
__toString()
.
echo $a[0],$a[1],$a[2],…
<?php date_default_timezone_set('Europe/Prague'); function getTime(){ list($usec, $sec) = explode(" ", microtime()); return ((float)$usec + (float)$sec); } define("ITEMS", 10); define("STRSTEPS", 6); define("STEPS", 10000); $hstart='<span style="display: none;">TEXT:'; $hend='</span>'; $a = array(); for($i=0;$i < ITEMS;$i++){ $a[] = str_shuffle(str_repeat('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',STRSTEPS)); } $start = getTime(); echo $hstart; for($i=0;$i<STEPS;$i++){ foreach($a as $v){ print $v; } } echo $hend; $time = getTime() - $start; echo "\n<br />*TIME foreach : $time<br />\n"; $start = getTime(); echo $hstart; for($i=0;$i<STEPS;$i++){ for($j=0;$j < ITEMS;$j++){ print $a[$j]; } } echo $hend; $time = getTime() - $start; echo "\n<br />*TIME for : $time<br />\n"; $start = getTime(); echo $hstart; for($i=0;$i<STEPS;$i++){ echo implode($a); } echo $hend; $time = getTime() - $start; echo "\n<br />*TIME implode(): $time<br />\n"; $start = getTime(); echo $hstart; for($i=0;$i<STEPS;$i++){ $pomstr=''; for($j=0;$j < ITEMS;$j++) $pomstr.=$a[$j]; echo $pomstr; } echo $hend; $time = getTime() - $start; echo "\n<br />*TIME pomstr.= : $time<br />\n"; $start = getTime(); echo $hstart; for($i=0;$i<STEPS;$i++){ echo $a[0].$a[1].$a[2].$a[3].$a[4].$a[5].$a[6].$a[7].$a[8].$a[9]; } echo $hend; $time = getTime() - $start; echo "\n<br />*TIME .[]. : $time<br />\n"; $start = getTime(); echo $hstart; for($i=0;$i<STEPS;$i++){ echo $a[0],$a[1],$a[2],$a[3],$a[4],$a[5],$a[6],$a[7],$a[8],$a[9]; } echo $hend; $time = getTime() - $start; echo "\n<br />*TIME [] : $time<br />\n";Spuštěné:
php kuk.php > kuk && grep '*' kukto dalo (na slabší mašince):
<br />*TIME foreach : 0.46209192276001<br /> <br />*TIME for : 0.98375391960144<br /> <br />*TIME implode(): 0.20939517021179<br /> <br />*TIME pomstr.= : 2.4737629890442<br /> <br />*TIME .[]. : 2.3295640945435<br /> <br />*TIME [] : 2.6475369930267<br />…jen u posledních dvou jsem to čekal obráceně…
*TIME foreach : 2.6435630321503 *TIME for : 2.9650778770447 *TIME implode(): 1.3122179508209 *TIME pomstr.= : 4.6817560195923 *TIME .[]. : 2.4447479248047 *TIME [] : 2.0510191917419Na obou mašinách však zvítězila funkce
implode()
. S využitím output bufferingu však výsledky dopadly trochu jinak:
*TIME foreach : 0.4439480304718 *TIME for : 0.48819804191589 *TIME implode(): 0.56835508346558 *TIME pomstr.= : 1.8790969848633 *TIME .[]. : 1.9683930873871 *TIME [] : 0.52422690391541a zde už zvítězil cyklus.
'AMD Athlon(tm) Processor LE-1640'
.
*TIME foreach : 0.50749897956848
*TIME for : 0.50337791442871
*TIME implode(): 0.50320887565613
*TIME pomstr.= : 0.49960994720459
*TIME .[]. : 0.5042028427124
*TIME [] : 0.49123191833496
zatimco pres cli
*TIME foreach : 0.23669791221619
*TIME for : 0.24331903457642
*TIME implode(): 0.13928508758545
*TIME pomstr.= : 0.11431002616882
*TIME .[]. : 0.10860085487366
*TIME [] : 0.23174500465393
jsem teda cekal, ze to dopadne jinak (nehlede na to, ze je to sice serverova masina, ale s dost velkym loadem :) )
*TIME foreach : 0.50749897956848
*TIME for : 0.50337791442871
*TIME implode(): 0.50320887565613
*TIME pomstr.= : 0.49960994720459
*TIME .[]. : 0.5042028427124
*TIME [] : 0.49123191833496
*TIME foreach : 0.23669791221619
*TIME for : 0.24331903457642
*TIME implode(): 0.13928508758545
*TIME pomstr.= : 0.11431002616882
*TIME .[]. : 0.10860085487366
*TIME [] : 0.23174500465393
Tiskni
Sdílej: