Na čem aktuálně pracují vývojáři GNOME a KDE Plasma? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE Plasma.
Ubuntu 25.10 bude (𝕏) Questing Quokka (pátrající klokan quokka).
Ubisoft uvolnil zdrojové kódy softwaru Chroma pro simulaci barvosleposti pro vývojáře počítačových her. K dispozici jsou na GitHubu pod licencí Apache 2.0.
Defold (Wikipedie) je multiplatformní herní engine. Nejnovější verze je 1.10.0. Zdrojové kódy jsou k dispozici na GitHubu. Licence vychází z licence Apache 2.0.
Správa služeb hlavního města Prahy se potýká s následky kyberútoku. Hackerská skupina začala zveřejňovat na internetu některé z ukradených materiálů a vyzvala organizaci k vyjednávání. Ta zatím podrobnosti k případu sdělovat nechce. Případem se zabývá policie i Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB).
OCCT je oficiálně k dispozici na Linuxu (YouTube). Jedná se o proprietární software pro zátěžové testování a monitorování hardwaru.
Společnost OpenAI představila AI modely o3 a o4-mini (𝕏).
Canonical vydal Ubuntu 25.04 Plucky Puffin. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do ledna 2026.
Desktopové prostředí LXQt (Lightweight Qt Desktop Environment, Wikipedie) vzniklé sloučením projektů Razor-qt a LXDE bylo vydáno ve verzi 2.2.0. Přehled novinek v poznámkách k vydání.
Vývojáři KDE oznámili vydání balíku aplikací KDE Gear 25.04. Přehled novinek i s náhledy a videi v oficiálním oznámení.
#include <string> #include <iostream> class Base { public: std::string x; int y; Base(std::string x_, int y_): x(x_), y(y_) {} Base(Base &&b): x(std::move(b.x)), y(b.y) {} virtual ~Base() {} virtual void do_something() = 0; virtual void turn_to_a() {} }; class B; class A: public Base { public: A(B &&b); A(std::string x_, int y_): Base(x_, y_) {} void do_something() override { std::cout << "I am 'A'. x = " << x << ", y = " << y << "\n"; } }; class B: public Base { public: B(std::string x_, int y_): Base(x_, y_) {} void do_something() override { std::cout << "I am 'B'. x = " << x << ", y = " << y << "\n"; } void turn_to_a() override { static_assert(sizeof(A) == sizeof(B), "must be the same size"); B tmp(std::move(*this)); this->B::~B(); new (this) A(std::move(tmp)); } }; A::A(B &&b): Base(std::move(b)) {} int main() { Base *b = new B("life, universe and everything", 42); b->do_something(); b->turn_to_a(); b->do_something(); delete b; }
Řešení dotazu:
union
?
bool is_a;
. A potom v kazdy metode testoval jestli je flag nastaveny, ale prijde me ze mit to oddeleny je o neco cistsi.
Dejme tomu ze mam 2 tridy - A a B. Obe dedi z tridy Base. Nepridavaji zadne promenne, jen predefinuji virtualni funkce. Program nacita data a vetsinou z nich chce vytvorit tridu B. Obcas ale A a problem je ze tuto informaci se dozvi az pozdeji. Kdyz se dozvi ze vlastne potrebuje A tak nechci aby musel alokovat novou pamet, ani aby musel zpetne menit pointery ktere uz ukazuji na B.Začalo to hezky, skoro jako v pohádce: Žily byly dvě sestry, jedna staříkova, druhá stařenčina ... ... ale zápletka na sebe nenechala dlouho čekat. Pokud program chce "většinou" vytvořit třídu B, ale někdy později ji chce vyměnit za A, tak najednou se po nás chce zajistit dynamické chování ve statickém světě dědičnosti tříd. Prostě z jezevčíka mávnutím kouzelné hůlky udělat dobrmana. Vždyť je to přeci také pes. Použití operátoru new s umístěním je ale stejné jako nahánění jezevčíka s chirurgickým skalpelem v ruce. Když se na to podívám z druhé strany, tak vlastně nepotřebuji předělávat jezevčíka na dobrmana, ale chci jen naučit psa kousat jako dobrman, aby mi nikdo nechodil po dvorku. Pokud nejsem psí zubař, tak mohu tedy skalpel s klidem zahodit
#include <iostream> enum StrategyType { A, B }; class Strategy { protected: std::string* x; int* y; public: void setOptions(std::string* _x, int* _y) { x = _x; y = _y; } virtual void doSomething() = 0; }; class StrategyA : public Strategy { virtual void doSomething() { std::cout << "I am 'A'. x = " << *x << ", y = " << *y << std::endl; } }; class StrategyB : public Strategy { virtual void doSomething() { std::cout << "I am 'B'. x = " << *x << ", y = " << *y << std::endl; } }; class Base { private: std::string x; int y; Strategy* strategy; public: Base(std::string x_, int y_): x(x_), y(y_), strategy(NULL) {} ~Base() { delete strategy; } void doSomething() { strategy->doSomething(); } void setStrategy(StrategyType type) { if (strategy) delete strategy; if (type == A) strategy = new StrategyA(); else if (type == B) strategy = new StrategyB(); strategy->setOptions(&x, &y); } }; int main() { Base base("life, universe and everything", 42); base.setStrategy(B); base.doSomething(); // ... base.setStrategy(A); base.doSomething(); return 0; }Oproti zadání je možné měnit strategie nejen z B na A, ale i zpět a navíc opakovaně.
template<typename T> class Wrap { public: T* new_() { return new(this) T();} void delete_() { ((T*)this)->~T(); } unsigned char data[sizeof(T)]; }; class Base { public: Base() {} virtual ~Base() {} virtual int getType() const = 0; int a; int b; }; class A : public Base { public: A() {} virtual ~A() {} virtual int getType() const { return 1; } }; class B : public Base { public: B() {} virtual ~B() {} virtual int getType() const { return 2; } }; union Union { template<typename T> T* as() { return (T*)this; } Wrap<A> a; Wrap<B> b; }; int main(int argc, char* argv[]) { Union u; u.a.new_(); printf("%d\n", u.as<Base>()->getType()); u.a.delete_(); u.b.new_(); printf("%d\n", u.as<Base>()->getType()); u.b.delete_(); return 0; }
Tiskni
Sdílej: