Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
Google postupně zpřístupňuje českým uživatelům Režim AI (AI Mode), tj. nový režim vyhledávání založený na umělé inteligenci. Režim AI nabízí pokročilé uvažování, multimodalitu a možnost prozkoumat jakékoliv téma do hloubky pomocí dodatečných dotazů a užitečných odkazů na weby.
Programovací jazyk Python byl vydán v nové major verzi 3.14.0. Podrobný přehled novinek v aktualizované dokumentaci.
Bylo oznámeno, že Qualcomm kupuje Arduino. Současně byla představena nová deska Arduino UNO Q se dvěma čipy: MPU Qualcomm Dragonwing QRB2210, na kterém může běžet Linux, a MCU STM32U585 a vývojové prostředí Arduino App Lab.
Multiplatformní open source voxelový herní engine Luanti byl vydán ve verzi 5.14.0. Podrobný přehled novinek v changelogu. Původně se jedná o Minecraftem inspirovaný Minetest v říjnu loňského roku přejmenovaný na Luanti.
Byla vydána nová stabilní verze 6.10 (YouTube) multiplatformního frameworku a GUI toolkitu Qt. Podrobný přehled novinek v poznámkách k vydání.
#include <string> #include <iostream> class Base { public: std::string x; int y; Base(std::string x_, int y_): x(x_), y(y_) {} Base(Base &&b): x(std::move(b.x)), y(b.y) {} virtual ~Base() {} virtual void do_something() = 0; virtual void turn_to_a() {} }; class B; class A: public Base { public: A(B &&b); A(std::string x_, int y_): Base(x_, y_) {} void do_something() override { std::cout << "I am 'A'. x = " << x << ", y = " << y << "\n"; } }; class B: public Base { public: B(std::string x_, int y_): Base(x_, y_) {} void do_something() override { std::cout << "I am 'B'. x = " << x << ", y = " << y << "\n"; } void turn_to_a() override { static_assert(sizeof(A) == sizeof(B), "must be the same size"); B tmp(std::move(*this)); this->B::~B(); new (this) A(std::move(tmp)); } }; A::A(B &&b): Base(std::move(b)) {} int main() { Base *b = new B("life, universe and everything", 42); b->do_something(); b->turn_to_a(); b->do_something(); delete b; }
Řešení dotazu:
union
?
bool is_a;
. A potom v kazdy metode testoval jestli je flag nastaveny, ale prijde me ze mit to oddeleny je o neco cistsi.
Dejme tomu ze mam 2 tridy - A a B. Obe dedi z tridy Base. Nepridavaji zadne promenne, jen predefinuji virtualni funkce. Program nacita data a vetsinou z nich chce vytvorit tridu B. Obcas ale A a problem je ze tuto informaci se dozvi az pozdeji. Kdyz se dozvi ze vlastne potrebuje A tak nechci aby musel alokovat novou pamet, ani aby musel zpetne menit pointery ktere uz ukazuji na B.Začalo to hezky, skoro jako v pohádce: Žily byly dvě sestry, jedna staříkova, druhá stařenčina ... ... ale zápletka na sebe nenechala dlouho čekat. Pokud program chce "většinou" vytvořit třídu B, ale někdy později ji chce vyměnit za A, tak najednou se po nás chce zajistit dynamické chování ve statickém světě dědičnosti tříd. Prostě z jezevčíka mávnutím kouzelné hůlky udělat dobrmana. Vždyť je to přeci také pes. Použití operátoru new s umístěním je ale stejné jako nahánění jezevčíka s chirurgickým skalpelem v ruce. Když se na to podívám z druhé strany, tak vlastně nepotřebuji předělávat jezevčíka na dobrmana, ale chci jen naučit psa kousat jako dobrman, aby mi nikdo nechodil po dvorku. Pokud nejsem psí zubař, tak mohu tedy skalpel s klidem zahodit
#include <iostream> enum StrategyType { A, B }; class Strategy { protected: std::string* x; int* y; public: void setOptions(std::string* _x, int* _y) { x = _x; y = _y; } virtual void doSomething() = 0; }; class StrategyA : public Strategy { virtual void doSomething() { std::cout << "I am 'A'. x = " << *x << ", y = " << *y << std::endl; } }; class StrategyB : public Strategy { virtual void doSomething() { std::cout << "I am 'B'. x = " << *x << ", y = " << *y << std::endl; } }; class Base { private: std::string x; int y; Strategy* strategy; public: Base(std::string x_, int y_): x(x_), y(y_), strategy(NULL) {} ~Base() { delete strategy; } void doSomething() { strategy->doSomething(); } void setStrategy(StrategyType type) { if (strategy) delete strategy; if (type == A) strategy = new StrategyA(); else if (type == B) strategy = new StrategyB(); strategy->setOptions(&x, &y); } }; int main() { Base base("life, universe and everything", 42); base.setStrategy(B); base.doSomething(); // ... base.setStrategy(A); base.doSomething(); return 0; }Oproti zadání je možné měnit strategie nejen z B na A, ale i zpět a navíc opakovaně.
template<typename T> class Wrap { public: T* new_() { return new(this) T();} void delete_() { ((T*)this)->~T(); } unsigned char data[sizeof(T)]; }; class Base { public: Base() {} virtual ~Base() {} virtual int getType() const = 0; int a; int b; }; class A : public Base { public: A() {} virtual ~A() {} virtual int getType() const { return 1; } }; class B : public Base { public: B() {} virtual ~B() {} virtual int getType() const { return 2; } }; union Union { template<typename T> T* as() { return (T*)this; } Wrap<A> a; Wrap<B> b; }; int main(int argc, char* argv[]) { Union u; u.a.new_(); printf("%d\n", u.as<Base>()->getType()); u.a.delete_(); u.b.new_(); printf("%d\n", u.as<Base>()->getType()); u.b.delete_(); return 0; }
Tiskni
Sdílej: