Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Open source modální textový editor Helix, inspirovaný editory Vim, Neovim či Kakoune, byl vydán ve verzi 25.07. Přehled novinek se záznamy terminálových sezení v asciinema v oznámení na webu. Detailně v CHANGELOGu na GitHubu.
Zdravím,
Měl jsem interface:
class Interface{
public:
virtual int cosi()=0;
...
}
a pak několik implementací:
class A: public Interface{
public:
int cosi();
...
}
class B: public Interface{
public:
B();
~B();
int cosi();
...
}
A dále factory, která mi podle předaných parametrů várátila instanci nějakého konkrétní implementace.
Interface test = factory->choose(parametry);
Takže jsem nevěděl, která konkrétní implementace je použita.
Problém nastal při volání destruktoru.
delete test
způsobil varování na undefined behavior, protože se volal destruktor Interface a ne konkrétní implementace A nebo B a tudíž v případě B to způsobovalo memoryleak.
Jak to vyřešit?
Když přidám protected destructor do Interface:
protected:
virtual ~Interface()=0;
...
inline ReadWrite::~ReadWrite() { }
a destruktory do každé implementace, tak to pořád neřeší problém.
Musím volat destruktor pro konkrétní implementaci a nějak si tudíž musím pamatovat jaká konkrétní implementace je použita, což mi připadá principiálně špatně. Jediná možnost, která mě napadá, je zavolat opět factory se stejnými parametry, aby mi řekla, jaká iplementace byla použita, což se mi taky moc nelíbí. Jak se tohle řeší?
Řešení dotazu:
Když bude public, tak se ale bude volat destruktor ~Interface(), což nechci, protože potřebuju zavolat destruktor konkrétní implemtace - ~B(); v B() něco alokuju, takže to musim uvolnit v ~B() ne v ~Interface(), kterej neví o tom, co se v B() alokovalo.
V tomhle konkrétním případě to můžu udělat tak, že v B() nebudu nic alokoavat a nemusí mít konstruktor ani destruktor - bude jeden prázdnej public destruktor v Interface. Zajímalo by mě to spíš teoreticky...
/** * @class Interface * @brief Interface class.Ne-virtuální destruktor základní třídy při „dědění“ je dost specifická a obvykle nežádoucí věc.
* This class is designed for inheritance. */ class Interface{ public: /** * Virtual empty destructor */ virtual ~Interface(){} /** * cosi do cosi */ virtual int cosi()=0; };
protected:
virtual ~Interface()=0;
...
inline Interface::~Interface() { }
Neopravil jsem to při kopírování z opravdového kódu.
protected: virtual ~Interface(){};U tříd, které budou mít destruktor vlastní, se bude volat ten vlastní, u ostatních ten z Interface, nevidím v tom problém.
Mě de o to, že mam Interface* test = new B(); a pak delete test;, jenže to se zavolá ~Interface místo ~B();
Řešim teda jak nějak elegantně volat konkrétní destruktor ~A() nebo ~B() nad Interface* test;
Instacne Interface se vytváří podle paramatrů sama a já nevím jaká. Řešení mě napadaj dvě - při vytváření si do proměnné uložit co to je konkrétně za třídu (A nebo B) a pak zavolat konkrétní destruktor, což mi připadá špatně - k čemu mi pak je ten interface...
Druhá, lepší, je před voláním destruktoru zjistit z facotry, jakej to je typ, ale právě se ptám, jak se tohle běžně řeší, protože mi to připadá jako docela běžný problém, ale nikde jsem to řešené nenašel.
komplexnejsie riesenie je v C++ neuvazovat o typu interface, pretoze ich C++ defakto nema- no nemá, ale je jedno jak se tomu říká, jestli jestli čistě abstraktní třída nebo intreface - princip je stejný.
ak sa o triede uvazuje tak, ze sa z nej bude dedit, t.j. prakticky vzdy.Dědičnost je hezká věc, ale jen opravdu tam kde má význam, jinak je lepší se jí raději vyhnout. A myslím si, že je dobré, o každé třídě uvažovat jako by pro dědění nebyla připravena, není-li explicitně uvedeno jinak. Zbytečně zatěžovat kód virtuálními destrukory mi také nepřijde jako nejlepší řešení.
Tiskni
Sdílej: