Byly zveřejněny informace o kritické zranitelnosti CVE-2025-55182 s CVSS 10.0 v React Server Components. Zranitelnost je opravena v Reactu 19.0.1, 19.1.2 a 19.2.1.
Bylo rozhodnuto, že nejnovější Linux 6.18 je jádrem s prodlouženou upstream podporou (LTS). Ta je aktuálně plánována do prosince 2027. LTS jader je aktuálně šest: 5.10, 5.15, 6.1, 6.6, 6.12 a 6.18.
Byla vydána nová stabilní verze 3.23.0, tj. první z nové řady 3.23, minimalistické linuxové distribuce zaměřené na bezpečnost Alpine Linux (Wikipedie) postavené na standardní knihovně jazyka C musl libc a BusyBoxu. Přehled novinek v poznámkách k vydání.
Byla vydána verze 6.0 webového aplikačního frameworku napsaného v Pythonu Django (Wikipedie). Přehled novinek v poznámkách k vydání.
Po více než 7 měsících vývoje od vydání verze 6.8 byla vydána nová verze 6.9 svobodného open source redakčního systému WordPress. Kódové jméno Gene bylo vybráno na počest amerického jazzového klavíristy Gene Harrise (Ray Brown Trio - Summertime).
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za listopad (YouTube).
Google Chrome 143 byl prohlášen za stabilní. Nejnovější stabilní verze 143.0.7499.40 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 13 bezpečnostních chyb.
Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,2 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,42 %. Procesor AMD používá 66,72 % hráčů na Linuxu.
Canonical oznámil (YouTube), že nově nabízí svou podporu Ubuntu Pro také pro instance Ubuntu na WSL (Windows Subsystem for Linux).
Samsung představil svůj nejnovější chytrý telefon Galaxy Z TriFold (YouTube). Skládačka se nerozkládá jednou, ale hned dvakrát, a nabízí displej s úhlopříčkou 10 palců. V České republice nebude tento model dostupný.
// C interface
alias extern(C) void function(void*) CallbackFunc;
extern(C) extern void nejaka_c_fce(CallbackFunc func, void* data);
extern(C) extern void cekej_na_callback();
//
class Bla
{
uint[] nejakyData;
this()
{
nejakyData = new uint[1024*1024*10]; // 40M
nejaka_c_fce(&cCallback, cast(void*)this);
}
void callback()
{
// něco tady
}
static extern(C) cCallback(void *data)
{
Bla self = cast(Bla)data;
self.callback();
}
}
// ...
Bla bla;
void main()
{
while (true)
{
bla = new Bla();
cekej_na_callback();
// tahle fce čeká na nějaký data a až dorazí
// tak zavolá ten callback v tomhle samým vlákně,
// pak vrátí
}
}
Něco v tom stylu výše. Referenci na objekt samozřejmě držím stranou, dokud není zavolán callback, takže problém se zrušením objektu by neměl nastat (a ani nenastane, o čemž jsem se přesvědčil přidáním destruktoru).
const(void*)this, tak kód funguje.
import std.stdio;
import core.thread;
//import wayland.callback;
class Callback
{
void delegate(uint) m_callback;
Callback m_next;
uint[] m_lotsOfData;
public this(void delegate(uint) cb)
{
writefln("Callback %s create", cast(void*)this);
m_lotsOfData = new uint[1024*1024*10]; // 40M
writefln("Callback %s alloc done", cast(void*)this);
m_callback = cb;
}
~this()
{
writefln("Callback %s destroy", cast(void*)this);
}
public void call(uint bla)
{
m_callback(bla);
}
}
class Bla
{
Callback m_callbacks;
Callback m_last;
public Callback createCallback(void delegate(uint) cb)
{
Callback ret = new Callback(cb);
if (m_last is null)
m_callbacks = ret;
else
m_last.m_next = ret;
m_last = ret;
return ret;
}
public Callback createCallback(void function(uint) cb)
{
return createCallback( (uint bla) { cb(bla); } );
}
public void run()
{
while (m_callbacks !is null)
{
Callback cb = m_callbacks;
m_callbacks = cb.m_next;
cb.m_next = null;
if (m_callbacks is null)
m_last = null;
cb.call(111);
}
}
}
Bla bla;
void proc(uint serial)
{
writeln("call");
Thread.sleep(dur!("msecs")(10));
bla.createCallback(&proc);
}
void main()
{
bla = new Bla();
bla.createCallback(&proc);
bla.run();
}
/*
Display display;
SyncCallback cb;
void proc(uint serial)
{
writeln("sync");
Thread.sleep(dur!("msecs")(10));
cb = display.sync(&proc);
}
void main()
{
display = new Display(null);
cb = display.sync(&proc);
while (true)
display.dispatch();
}
*/
Řešení dotazu:
Jseš si jistý, že třída v D bude binárně kompatibilní se třídou v C++? Já si myslím, že to zaručeno není:
http//www.digitalmars.com/d/1.0/class.html
The D compiler is free to rearrange the order of fields in a class to optimally pack them in an implementation-defined manner.
Možná to nefunguje z tohoto důvodu:
http://www.digitalmars.com/d/1.0/garbage.html
void* p; ... int x = cast(int)p; // error: undefined behavior
garbage collector v D takové přetypování nedovoluje udělat
Přečti si všechno, co se píše v tom odkazu. Je úplně jedno, jestli přetypováváš na int nebo na instanci nějaké třídy. Navíc garbage collector v D se může kdykoliv rozhodnout přesunout ten objekt v paměti jinam, takže jakýkoliv void pointer ztrácí platnost (což bude ten důvod, proč to padá):
A copying garbage collector can arbitrarily move objects around in memory
Možný workaround by byl získat pointer na referenci místo objektu, ale musel bys zajistit, že ta reference nezanikne a taky to není hezké řešení.
A copying garbage collector can arbitrarily move objects around in memoryTo zní docela zajímavě. Možná by Jardíkovi pomohl odkaz na nějaké howto jak předávat callbacky s odkazem na třídu, protože to při kombinování D a C musí být každodenní use case. Není něco takového? Přecijem je D novější jazyk než C a tudíž se dá počítat, že chce fungovat i ve stávajícím ekosystému.
// Typical C-style callback mechanism; the passed function
// is invoked with the user-supplied context pointer at a
// later point.
extern(C) void addCallback(void function(void*), void*);
// Allocate an object on the GC heap (this would usually be
)// some application-specific context data.
auto context = new Object;
// Make sure that it is not collected even if it is no
// longer referenced from D code (stack, GC heap, …).
GC.addRoot(cast(void*)context);
// Also ensure that a moving collector does not relocate
// the object.
GC.setAttr(cast(void*)context, GC.BlkAttr.NO_MOVE);
// Now context can be safely passed to the C library.
addCallback(&myHandler, cast(void*)context);
extern(C) void myHandler(void* ctx)
{
// Assuming that the callback is invoked only once, the
// added root can be removed again now to allow the GC
// to collect it later.
GC.removeRoot(ctx);
GC.clrAttr(ctx, GC.BlkAttr.NO_MOVE);
auto context = cast(Object)ctx;
// Use context here…
}
Tiskni
Sdílej: