Všem vše nejlepší do nového roku 2026.
Crown je multiplatformní open source herní engine. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT a GPLv3+. Byla vydána nová verze 0.60. Vyzkoušet lze online demo.
Daniel Stenberg na svém blogu informuje, že po strncpy() byla ze zdrojových kódů curlu odstraněna také všechna volání funkce strcpy(). Funkci strcpy() nahradili vlastní funkcí curlx_strcopy().
Byla vydána nová verze 25.12.30 svobodného multiplatformního video editoru Shotcut (Wikipedie) postaveného nad multimediálním frameworkem MLT. Shotcut je vedle zdrojových kódů k dispozici také ve formátech AppImage, Flatpak a Snap.
Společnost Valve publikovala přehled To nej roku 2025 ve službě Steam aneb ohlédnutí za nejprodávanějšími, nejhranějšími a dalšími nej hrami roku 2025.
Byly publikovány výsledky průzkumu mezi uživateli Blenderu uskutečněného v říjnu a listopadu 2025. Zúčastnilo se více než 5000 uživatelů.
V dokumentově orientované databázi MongoDB byla nalezena a v upstreamu již opravena kritická bezpečností chyba CVE-2025-14847 aneb MongoBleed.
Při úklidu na Utažské univerzitě se ve skladovacích prostorách náhodou podařilo nalézt magnetickou pásku s kopií Unixu V4. Páska byla zaslána do počítačového muzea, kde se z pásky úspěšně podařilo extrahovat data a Unix spustit. Je to patrně jediný známý dochovaný exemplář tohoto 52 let starého Unixu, prvního vůbec programovaného v jazyce C.
FFmpeg nechal kvůli porušení autorských práv odstranit z GitHubu jeden z repozitářů patřících čínské technologické firmě Rockchip. Důvodem bylo porušení LGPL ze strany Rockchipu. Rockchip byl FFmpegem na porušování LGPL upozorněn již téměř před dvěma roky.
K dispozici je nový CLI nástroj witr sloužící k analýze běžících procesů. Název je zkratkou slov why-is-this-running, 'proč tohle běží'. Klade si za cíl v 'jediném, lidsky čitelném, výstupu vysvětlit odkud daný spuštěný proces pochází, jak byl spuštěn a jaký řetězec systémů je zodpovědný za to, že tento proces právě teď běží'. Witr je napsán v jazyce Go.
struct pollfd[N] a druhé pole ukazatelů na struktury, kde bude uložen pointer na callback a index, kde se fd nachází (aby odebrání bylo O(1)). Deskriptorů nebude hodně (v řádu stovek), ale budou se často měnit. Když bude jeden mít hodnotu 5, druhý 300 a třetí 60000, tak kvůli tomu nechci alokovat (dvě) pole s 60000 prvky, aby to mohlo být O(1), takže potřebuju ten index. Při odebrání prostě na místo přesunu poslední prvek. Každý thread bude mít event loop, takže by to ve výsledku bylo moc paměti. Stačí, že už kernel obsahuje mapování 1:1 na deskriptory, aby to mohlo být O(1). Takže souhrn:
typedef struct PollHandler PollHandler;
typedef void (*PollCallback)(PollHandler*, int events);
struct PollHandler
{
PollCallback callback;
};
struct MyUserStruct
{
int someMemberHere;
PollHandler pollHandler;
int moreMembersHere;
};
Uživatel předá fd, požadované události a pointer na PollHandler do funkce na začátek pollování. Pointer na PollHandler bych uložil do epoll_data (popř. ho zkombinoval s fd). Když dostanu event z epoll_wait, tak přečtu pointer na PollHandler a zavolám callback s adresou PollHandleru. Z něho si pak uživatel spočítá adresu struktury a ušetří tak jeden pointer na 'userdata'.
// Po epoll wait:
(*pollHandler->callback)(pollHandler, readyEvents);
// a v callbacku
void userCallback(PollHandler* h, int events)
{
MyUserStruct* us = (MyUserStruct)((char*)h - offsetof(MyUserStruct, pollHandler));
// dělej něco
}
Jenže chci umožnit, že v samotném callbacku může uživatel jako reakci na danou událost odstranit (či přidat) další takové 'handlery', takže nastane situace, kdy mám třeba pár set descriptorů vrácených v bufferu z epoll_wait a uživatel odebere nějaký descriptor, který může být v tomto bufferu. Musím tedy odstranit nejen decriptor z epoll deskriptoru a pak lineárně projít ten buffer a kontrolovat epoll_data, jestli tam není a pak ho buď nastavit na NULL, nebo na místo něho dát poslední položku a o jednu zmenšit počet položek. A to je to, čemu chci zabránit, procházet lineárně ten seznam, což by mohlo být pak i několikrát za sebou.
I kdybych použil další nepřímý ukazatel, kde bych měl ukazatel na uživatelův ukazatel, tak on by zase musel někam uložit tento, aby s ním pak mohl odstranit descriptor, abych ho zase já mohl uvolnit. To má za následek alokování další struktury s tím, že uživatel místo neušetří (musí si pointer schovat). Pak ještě budu muset udržovat linked list 'uvolněných' těchto bloků a až dojedu na konec bufferu, tak je uvolnit, popř. nechat pro další použití (asi lepší). ... No třeba by to nebylo špatné, ještě se nad tím zamyslím.
struct poll_handler
{
uintptr_t magic_value_1;
uintptr_t magic_value_2;
};
Kde
magic_value_1 = (((uintptr_t)fd & 0xffff0000u) << 48)
| (uintptr_t)callback
| (uintptr_t)flags;
magic_value_2 = (((uintptr_t)fd & 0xffffu) << 48)
| (uintptr_t)userdata;
nebo (podle nastavení flags)
magic_value_2 = next_poll_handler;
Tím mám 16 bytů na strukturu.
Vejdou se tam uživatelská data (musí být platný ukazatel, tj. má 47 spodních bitů (pointery s bitem 47 (který se pak kopíruje i do zbytku do 63) jsou rezervovány pro kernel), zarovnání je nedůležité, spodní bity v userdata nepoužiji. Nahoře mám 17 bitů, použiju jen 16 a tam kydnu tam spodních 16 bitů deskriptoru.
Pak callback, kompilátor funkce zarovnává na 16, a opět max je 47 bitů. Takže horních 16 bitů pro horních 16 bitů deskriptoru, spodní 4 bity na flagy. Flag zatím užiju jeden, 'removed'. Ten nastavím, když uživatel odstraní deskriptor, zároveň se přepíšou userdata na pointer na další odstraněnou položku ... jak tedy uživatel odstraňuje, dělám linked list odstraněných položek.
Obsluhování bufferu je tak, že procházím položky. Když je bit 'removed' nastaven, položku přeskočím, když ne, zavolám callback a jdu na další. Až dojedu na konec, tak struktury nalinkuju do seznamu s 'volnými' handlery. Ty neuvolňuju a nechávám je pro další použití při přidání deskriptoru.
No ... a stejně se mi to nelíbí, je to hrozná splácanina, jestli to za těch ušetřených 8 bytů, o které by struktura narostla, stojí. Ale asi by byla moc hezká:
struct poll_handler
{
poll_callback cb;
void *userdata_or_next;
int fd;
int flags;
};
Při 65k descriptorech to je půl megabajtu.
Jinak koukal jsem na zdroják kernelu a epoll uchovává přidané položky v obrovských strukturách, nalinkované v červenočerném stromu a pak ještě linkované pomocí ready-stavu a pak ještě linkované jánevímčím. Přidání/odebrání/modifikace je tedy O(log N) a stojí syscall.
Tiskni
Sdílej: