Raspberry Pi OS, oficiální operační systém pro Raspberry Pi, byl vydán v nové verzi 2025-10-01. Přehled novinek v příspěvku na blogu Raspberry Pi a poznámkách k vydání. Jedná o první verzi postavenou na Debianu 13 Trixie.
Byla vydána nová verze 4.6 svobodného notačního programu MuseScore Studio (Wikipedie). Představení novinek v oznámení v diskusním fóru a také na YouTube.
Společnost DuckDuckGo stojící za stejnojmenným vyhledávačem věnovala 1,1 milionu dolarů (stejně jako loni) na podporu digitálních práv, online soukromí a lepšího internetového ekosystému. Rozdělila je mezi 29 organizací a projektů. Za 15 let rozdala 8 050 000 dolarů.
Svobodný multiplatformní herní engine Bevy napsaný v Rustu byl vydán ve verzi 0.17. Díky 278 přispěvatelům.
Bylo vydáno openSUSE Leap 16 (cs). Ve výchozím nastavení přichází s vypnutou 32bitovou (ia32) podporou. Uživatelům však poskytuje možnost ji ručně povolit a užívat si tak hraní her ve Steamu, který stále závisí na 32bitových knihovnách. Změnily se požadavky na hardware. Leap 16 nyní vyžaduje jako minimální úroveň architektury procesoru x86-64-v2, což obecně znamená procesory zakoupené v roce 2008 nebo později. Uživatelé se starším hardwarem mohou migrovat na Slowroll nebo Tumbleweed.
Ministerstvo průmyslu a obchodu (MPO) ve spolupráci s Národní rozvojovou investiční (NRI) připravuje nový investiční nástroj zaměřený na podporu špičkových technologií – DeepTech fond. Jeho cílem je posílit inovační ekosystém české ekonomiky, rozvíjet projekty s vysokou přidanou hodnotou, podpořit vznik nových technologických lídrů a postupně zařadit Českou republiku mezi země s nejvyspělejší technologickou základnou.
… více »Radicle byl vydán ve verzi 1.5.0 s kódovým jménem Hibiscus. Jedná se o distribuovanou alternativu k softwarům pro spolupráci jako např. GitLab.
Společnost OpenAI představila text-to-video AI model Sora 2 pro generování realistických videí z textového popisu. Přesnější, realističtější a lépe ovladatelný než předchozí modely. Nabízí také synchronizované dialogy a zvukové efekty.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04-1.0, tj. první stabilní vydání založené na Ubuntu 24.04 LTS.
Rakouská armáda přechází na LibreOffice. Ne kvůli licencím (16 000 počítačů). Hlavním důvodem je digitální suverenita. Prezentace v pdf z LibreOffice Conference 2025.
void funkce1(int chTime) // chTime - jak dlouho má cykl běžet.
{
unsigned int t0 = CurrentTick(); // začatek cyklu - neměnná hodnota
unsigned int t1 = CurrentTick(); // aktuální doba cyklu
unsigned int overFlow = 0; // detekuje přeteceni CurrentTick
while((t0+chTime)>(t1+overFlow))
{
// ZDE BUDE KÓD, KTERÝ CHCI ČASOVAT
// 1 CYKLUS MŮŽE TRVAT AŽ 2s
t1=CurrentTick(); // aktualizace času smyčky - "aktuální čas"
if(t1 < t0) // kontrola proti přetečení
{
overFlow = 65535;
}
}
}
time(2)
, gettimeofday(2)
, alarm(2)
, setitimer(2)
, …
Ten kód je celkově dost problematický, není třeba jasné, kde přesně se vzala magická konstanta 65535 (není to spíš 65536?) a počítá se jen s jedním přetečením. Pokud "vrátí okamžitě" znamená, že se cyklus neprovede ani jednou, šlo by to vysvětlit např. tím, že překladač prohodil pořadí těch dvou inicializací a t1
se inicializovala na 65535, ale t0
už na nulu. V každém případě je nesmysl na začátku CurrentTick()
(Co to vůbec je? Standardní systémová funkce určitě ne.) volat dvakrát, spíš použijte pro t1
hodnotu, kterou už máte v t0
.
šlo by to vysvětlit např. tím, že překladač prohodil pořadí těch dvou inicializací
Nejspíš nešlo. Tím, že je tam volání funkce, tak to udělat nemůže. Jedině že by ta funkce byla inline a prováděla něco jako čtení z nějaké globální proměnné, kterou cosi na pozadí aktualizuje.
Na druhou stranu si lze snadno představit, jak by cyklus neskončil nikdy: pokud se t0
inicializuje na nulu, podmínka "t1 < t0
" nebude nikdy splněná a přetečení nedetekujete.
ale v principu by to nemělo vadit
Může, protože pak překladači nic nebrání ty dvě inicializace prohodit. Proto existují věci jako bariéry, abyste mu v tom zabránil. V každém případě ale není sebemenší důvod při inicializaci tu funkci volat dvakrát, prostě použijte stejnou hodnotu pro obě proměnné, je to jednodušší a nebudete riskovat překvapení.
Kdyby se t0 inicializovalo na 0 (což je pouze před započetím časového cyklu), vůbec by to nevadilo, vlastně by to byl ideální případ. Jelikož max časování je jak jsem psal 50 sekund.
Holt si asi každý musí natlouct sám, aby pochopil, jakou trvanlivost tyhle skryté předpoklady mají a jak nepříjemné je pak hledat chyby, které se začnou objevovat, když jednoho dne přestanou platit (v době, kdy už jste dávno zapomněl, kde všude jste to předpokládal). Pokud mermomocí trváte na tom, že to nechcete napsat pořádně, tak aspoň kontrolujte ten argument, ať aspoň víte proč, až to "bouchne".
if(t1 <= t0)
a následně overFlow inkrementovat o 65536 kvůli vícenásobnému přetečení.
t0
, pro vás je spíš důležité, jestli je menší než minulá hodnota t1
(pokud se můžeme spolehnout, že vám to během jednoho cyklu nenaskočí o 65536 a víc).
Ještě jedna praktická rada:
Ohledně toho CurrenTick() - tohle je programované pro řídicí jednotku robota.
Pokud se dotaz týká nějakého velmi specifického prostředí, kde nelze použít běžné nástroje a obraty, je dobré na to hned na začátku upozornit.
uint16_t t0 = CurrentTick(); while (chTime > 0) { ... uint16_t t1 = CurrentTick(); chTime -= t1 - t0; t0 = t1; }
Nějak divně tam inicializuješ ty časové proměnné. Když si normálně v běžném userspace naimplementuju CurrentTicks()
, daří se mi to vyzkoušet takhle:
#include <stdlib.h> #include <stdio.h> #include <time.h> #include <inttypes.h> static const size_t BILLION = 1000000000; static const size_t MILLION = 1000000; static const uint32_t TIME_MASK = 0xffff; static const uint32_t TIME_MAX = TIME_MASK + 1; static const struct timespec PAUSE = { .tv_sec = 0, .tv_nsec = 500000000, }; static uint32_t CurrentTick() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) { perror("clock error"); exit(1); } const uint64_t ns = (uint64_t)ts.tv_sec * BILLION + (uint64_t)ts.tv_nsec; return (uint32_t)(ns / MILLION) & TIME_MASK; } static void funkce1(int chTime) { if (chTime > 0) { uint32_t t0 = CurrentTick(); do { /* Tady začíná časovaný kód. */ printf("\tZbývá: %d ms, CurrentTick: %u ms\n", chTime, t0); struct timespec remaining; if (nanosleep(&PAUSE, &remaining)) while (nanosleep(&remaining, &remaining)); /* Tady končí časovaný kód. */ const uint32_t t1 = CurrentTick(); chTime -= t1 > t0 ? t1 - t0 : TIME_MAX - t0 + t1; t0 = t1; } while (chTime > 0); } } int main() { const int times_sec[] = {1, 2, 4, 8, 16, 32, 64, 65, 66, 99}; for (size_t i = 0; i < sizeof(times_sec) / sizeof(int); ++i) { printf("Spouštím časovač na %d s.\n", times_sec[i]); funkce1(1000 * times_sec[i]); } return 0; }
Tohle^^^ si můžeš rovnou spustit, sledovat, kdy čas přeteče, a zkoušet různé alternativy. Klíčové je, jak se v tom cyklu aktualizuje uplynulý čas.
Pokud by jedna iterace toho časovacího kódu trvala déle než 65536 milisekund, bude samozřejmě tohle řešení nepoužitelné a časování by se muselo řešit jinak.
Tiskni
Sdílej: