Bun (Wikipedie), tj. běhové prostředí (runtime) a toolkit pro JavaScript a TypeScript, alternativa k Node.js a Deno, byl vydán ve verzi 1.3. Představení novinek také na YouTube. Bun je naprogramován v programovacím jazyce Zig.
V Lucemburku byly oznámeny výsledky posledního kola výzev na evropské továrny pro umělou inteligenci neboli AI Factories. Mezi úspěšné žadatele patří i Česká republika, potažmo konsorcium šesti partnerů vedené VŠB – Technickou univerzitou Ostrava. V rámci Czech AI Factory (CZAI), jak se česká AI továrna jmenuje, bude pořízen velmi výkonný superpočítač pro AI výpočty a vznikne balíček služeb poskytovaný odborníky konsorcia. Obojí bude sloužit malým a středním podnikům, průmyslu i institucím veřejného a výzkumného sektoru.
Byla vydána (𝕏) zářijová aktualizace aneb nová verze 1.105 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.105 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Ve Firefoxu bude lepší správa profilů (oddělené nastavení domovské stránky, nastavení lišt, instalace rozšíření, uložení hesla, přidání záložky atd.). Nový grafický správce profilů bude postupně zaváděn od 14.října.
Canonical vydal (email) Ubuntu 25.10 Questing Quokka. Přehled novinek v poznámkách k vydání. Jedná se o průběžné vydání s podporou 9 měsíců, tj. do července 2026.
ClamAV (Wikipedie), tj. multiplatformní antivirový engine s otevřeným zdrojovým kódem pro detekci trojských koní, virů, malwaru a dalších škodlivých hrozeb, byl vydán ve verzi 1.5.0.
Byla vydána nová verze 1.12.0 dynamického programovacího jazyka Julia (Wikipedie) určeného zejména pro vědecké výpočty. Přehled novinek v příspěvku na blogu a v poznámkách k vydání. Aktualizována byla také dokumentace.
V Redisu byla nalezena a v upstreamu již opravena kritická zranitelnost CVE-2025-49844 s CVSS 10.0 (RCE, vzdálené spouštění kódu).
Ministr a vicepremiér pro digitalizaci Marian Jurečka dnes oznámil, že přijme rezignaci ředitele Digitální a informační agentury Martina Mesršmída, a to k 23. říjnu 2025. Mesršmíd nabídl svou funkci během minulého víkendu, kdy se DIA potýkala s problémy eDokladů, které některým občanům znepříjemnily využití možnosti prokázat se digitální občankou u volebních komisí při volbách do Poslanecké sněmovny.
Společnost Meta představila OpenZL. Jedná se o open source framework pro kompresi dat s ohledem na jejich formát. Zdrojové kódy jsou k dispozici na GitHubu.
mam mnozinu asi 20mil stringov (dlzka je cca 34 znakov) a hladam sposob ako ich co najrychlejsie porovnat s vygenerovanym stringom.
momentalne to riesim tak, ze stringy mam ulozene v postgresql (samozrejmostou je btree index) a robim SELECT string FROM strings WHERE string='vygenerovany_string'
. Je to bruteforce napisany v c s vyuzitim libpq kniznice, pri ktorom dosahujem cca 170 porovnani/selectov za sekundu.
zda sa mi 170 porovnani za sekundu malo. rad by som toto navysil o niekolko radov a priblizil sa ku 100000 a viac porovnani za sekundu
myslite ze sa to da dosiahnut v beznych domacich podminkach? a ak ano ako by sa to dalo vyriesit?
PS: zacinam uvazovat nad aho-corasick algoritmom ale kjedze nie som developer, bolo by super ine riesenie
Dakujem
#include <iostream> #include <string> #include <functional> #include <algorithm> #include <cstdlib> #include <ctime> std::string some_string() { char result[35]; for (int i = 0; i < 34; i++) { result[i] = ' ' + rand() % 64; } result[34] = 0; return result; } void measure_time(const std::string &label, std::function<void()> f) { clock_t start = clock(); std::cout << label << std::flush; f(); clock_t finish = clock(); std::cout << " - finished in " << ((float)(finish - start)/CLOCKS_PER_SEC) << "s" << std::endl; } int main() { static const int MAX = 20000000; std::string *s = new std::string[MAX]; measure_time("String generation", [&s]() { for (int i = 0; i < MAX; i++) { s[i] = some_string(); } }); measure_time("Sorting", [&s]() { std::sort(s, s+MAX); }); static const int LOOKUP_COUNT = 100000; std::string *lookup = new std::string[LOOKUP_COUNT]; for (int i = 0; i < LOOKUP_COUNT; i++) { lookup[i] = some_string(); } measure_time("Lookup of 100k new strings", [&s, &lookup]() { for (int i = 0; i < LOOKUP_COUNT; i++) { std::binary_search(s, s+MAX, lookup[i]); } }); return 0; }Dostávám:
String generation - finished in 5.90161s Sorting - finished in 14.5592s Lookup of 100k new strings - finished in 0.188295s
set<string>
, bude to hotové na pár řádků a i pokud je nad tím nějaká obsáhlá C logika, tak to stejně nevadí, protože to většinou C++ komilátor zvládne zakomponovat.
Mate pravdu, je to napisane v C a v databaze je len jeden stlpec s mnozinou 20M stringov. Tento jediny stlpec je zaroven aj primarnym klucom.
Pointa mala byt v tom ze databaza si sama vsetko zoptimalizuje a vytvori indexy a hladanie/bruteforce bude velmi rychle. Pre mna ako neprogramatora toto mala byt najlahsia cesta/riesenie
po testoch sa ukazuje ze s roznymi konfiguraciami a optimalizaciami postgresql viem dosiahnut max 170 selectov/pokusov za sekundu
uvazoval som nad aho-corasick algoritmomJako že bys to lineárně prošel? To nebude fungovat - kromě false-positives taky kvůli rychlosti: celé ty tvoje stringy mají 680 MB, a to musíš celé přečíst (a ten automat žere vstup po bajtech). Ostatní vyhledávací struktury mají složitost logaritmickou. qsort + binární vyhledávání snad zvládneš, ne? A pokud se ti ty stringy, ve kterých vyhledáváš, mění (což jsi pořád ještě nenapsal!), použij červeno-černý strom - například ten z tree(3) nebo z libucw.
Tiskni
Sdílej: