Podvodné reklamy na sociálních internetových platformách, jako je Facebook, Instagram nebo X, vytvořily loni v Česku jejich provozovatelům příjmy 139 milionů eur, tedy zhruba 3,4 miliardy korun. Proti roku 2022 je to nárůst o 51 procent. Vyplývá to z analýzy Juniper Research pro společnost Revolut. Podle výzkumu je v Česku zhruba jedna ze sedmi zobrazených reklam podvodná. Je to o 14,5 procenta více, než je evropský průměr, kde je podvodná každá desátá reklama.
Desktopové prostředí KDE Plasma bylo vydáno ve verzi 6.6 (Mastodon). Přehled novinek i s videi a se snímky obrazovek v oficiálním oznámení. Podrobný přehled v seznamu změn.
Czkawka a Krokiet, grafické aplikace pro hledání duplicitních a zbytečných souborů, byly vydány ve verzi 11.0. Podrobný přehled novinek v příspěvku na Medium. Od verze 7.0 je vedle frontendu Czkawka postaveného nad frameworkem GTK 4 vyvíjen nový frontend Krokiet postavený nad frameworkem Slint. Frontend Czkawka je už pouze v udržovacím módu. Novinky jsou implementovány ve frontendu Krokiet.
Jiří Eischmann na svém blogu publikoval článek Úvod do MeshCore: "Doteď mě radioamatérské vysílání úplně míjelo. Když jsem se ale dozvěděl, že existují komunity, které svépomocí budují bezdrátové sítě, které jsou nezávislé na Internetu a do značné míry taky elektrické síti a přes které můžete komunikovat s lidmi i na druhé straně republiky, zaujalo mě to. Když o tom přede mnou pořád básnili kolegové v práci, rozhodl jsem se, že to zkusím taky.
… více »Byla vydána verze 0.5.20 open source správce počítačových her na Linuxu Lutris (Wikipedie). Přehled novinek v oznámení na GitHubu. Instalovat lze také z Flathubu.
Peter Steinberger, autor open source AI asistenta OpenClaw, nastupuje do OpenAI. OpenClaw bude převeden pod nadaci a zůstane otevřený a nezávislý.
Společnost Backblaze zveřejnila statistiky spolehlivosti pevných disků používaných ve svých datových centrech za rok 2025. Ke konci roku 2025 vlastnila 349 462 pevných disků. Průměrná AFR (Annualized Failure Rate), tj. pravděpodobnost, že disk během roku selže, byla 1,36 %. V roce 2024 to bylo 1,57 %. V roce 2023 to bylo 1,70 %. V roce 2022 to bylo 1,37 %.
Nástroj sql-tap je proxy mezi aplikací a databází, které zachytává všechny SQL dotazy a zobrazuje je v terminálovém rozhraní. Zde lze téměř v reálném čase zkoumat dotazy, sledovat transakce a spouštět SQL příkaz EXPLAIN. Podporované databázové systémy jsou pouze PostgreSQL a MySQL. Zdrojový kód je dostupný na GitHubu, pod licencí MIT.
Byla vydána nová verze 9.2 textového editoru Vim (Vi IMproved). Přináší vylepšené doplňování, podporu schránky ve Waylandu, podporu XDG Base Directory (konfigurace v $HOME/.config/vim), vylepšené Vim9 skriptování nebo lepší zvýrazňování změn. Vim zůstává charityware. Nadále vybízí k podpoře dětí v Ugandě. Z důvodu úmrtí autora Vimu Brama Moolenaara a ukončení činnosti jím založené charitativní organizace ICCF Holland projekt Vim navázal spolupráci s charitativní organizaci Kuwasha.
Byl představen editor MonoSketch, webová aplikace pro tvorbu diagramů, technických nákresů, flowchartů a různých dalších vizualizací, to vše jenom z ASCII znaků. Všechny operace běží pouze v prohlížeči uživatele a neprobíhá tedy žádné nahrávání dat na server. Zdrojový kód aplikace (drtivá většina Kotlin, žádné C#) je dostupný na GitHubu pod licencí Apache 2.0.
1) Kdyz A = 10, tak B = 2 2) Kdyz A = 20, tak B = 0.3Kolik bude B, kdyz A bude nekde mezi temi 10 a 20? B klesa linearne, mezi 2 a 0.3 je primka. Takze napr. GnuPlot mi vykresli graf, ale neukaze vzorec vypoctu. Nevedeli byste nekdo, co je toto za vypocet? Kdyztak predem diky za pripadne tipy.
Řešení dotazu:
if A1/B1=5 && A2/B2=9 then An/Bn=?
B = -0,17 * A + 3,7
if A1/B1=5 && A2/B2=9 then An/Bn=?
if 10/2 && 20/0.3 then 13.7/?dava to nejaky smysl? Myslim jako vypocet, ne jako programovani, to je jen pseudokod.
2 = 10x + y ? = 13.8x + y 0,3 = 20x + y
7 = 5000x + y ? = 5850x + y 0,01 = 6700x + y
1) Kdyz A = 10, tak B = 2 2) Kdyz A = 20, tak B = 0,3prepiseme
1) Kdyz X = 10, tak Y = 2 2) Kdyz X = 20, tak Y = 0,3Zavislost nech je linearna (priamka), Ale daj obrazok grafu, z neho sa da urcit, aka je to funkcia (linerarna, exponencionalna, …) Ak priamka:
Y = A * X + Btak pre dve zavisle hodnoty rovnakej funkcie bude vseobecne:
Y1 = A * X1 + B Y2 = A * X2 + BDosadime hodnoty:
2=A*10+B 0,3=A*20+BA riesime sustavu rovnic s dvoma neznamymi (matematika),
2=10*A+B 0,3=20*A+BPouzijeme scitaciu metodu
2 = 10 * A + B 0,3 = 20 * A + B / *(-1) --------------------------- 2 = 10 * A + B -0,3 = (-20) * A + B (scitame riadky) -0,7 = (-10) * A + B / *(-1) 0,7 = 10 * A A = 0,07 A dosadime do 1, rovnice zo zadanie: 2 = 10 * A + B 2 = 0,07 * 10 + B 2 = 0,7 + B / -0,7 B = 2 - 0,7 B = 1,3Dostali sme:
A = 0,07 B = 1,3Vysledna zavislost je:
Y = 0,7 * X + 1,3
// y = K1 * x + K2 - rovnica priamky float x1,x2,x3,y1,y2,y3,K1,K2; x1 = 10; // x-ova suradnica bodu 1 y1 = 2; // y-ova suradnica bodu 1 x2 = 20; // x-ova suradnica bodu 2 y2 = 0.3; // y-ova suradnica bodu 2 // Vypocet K1 a K2: K1 = (y2-y1)/(x2-x1); K2 = y1 - K1 * x1; x3 = 14.5; // x-ova suradnica bodu 3 // Neznama suradnica y bodu 3: y3 = K1 * x3 + K2;
2.000000 = -0.170000 * 10.000000 + 3.700000 3.649000 = -0.170000 * 0.300000 + 3.700000Kod overaci:
#include <stdio.h>
int main()
{
float x1,x2,x3,y1,y2,y3,K1,K2;
x1 = 10; // x-ova suradnica bodu 1
y1 = 2; // y-ova suradnica bodu 1
x2 = 20; // x-ova suradnica bodu 2
y2 = 0.3; // y-ova suradnica bodu 2
// Vypocet K1 a K2:
K1 = (y2-y1)/(x2-x1);
K2 = y1 - K1 * x1;
x3 = 14.5; // x-ova suradnica bodu 3
// Neznama suradnica y bodu 3:
y3 = K1 * x3 + K2;
x3=10;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
x3=0.3;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
return 0;
}
#include <stdio.h>
int main()
{
float x1,x2,x3,y1,y2,y3,K1,K2;
x1 = 10; // x-ova suradnica bodu 1
y1 = 2; // y-ova suradnica bodu 1
x2 = 20; // x-ova suradnica bodu 2
y2 = 0.3; // y-ova suradnica bodu 2
// Vypocet K1 a K2:
K1 = (y2-y1)/(x2-x1);
K2 = y1 - K1 * x1;
x3 = 14.5; // x-ova suradnica bodu 3
// Neznama suradnica y bodu 3:
y3 = K1 * x3 + K2;
x3=10;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
x3=20;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
return 0;
}
linsolve([10*x + b - 2, 20*x + b - 0.3], (x, b)), kde x, b jsou importované symboly. Takže pak prostě
def fce(x): return -0.17*x + 3.7A odkud plyne předpoklad lineární závislosti? Je jasné, že Gnuplot propojí dva body přímkou. Čím jiným? Nekonečným počtem křivek? Má ta úloha opravdu lineární vztah ve svém základu?
Načež soused mě poučil, že kdyby tu ty hory nebyly, tak Slunce nemá kam zapadnout a je pořád světlo.Ale vždyť to je pravda, kdyby tady nebyla ta [neprůhledná] země pod tebou, tak vidíme Slunce i v noci -- zespodu.
10*x_1 +x_2 = 2 20*x_2 + x_2 = 0,3,což zobecníme (to chceš, jak jsem pochopil) a přepíšeme to do tvaru
a_11*x_1 + a_12*x_2 = b_1 a_21*x_1 + a_22*x_2 = b_2.Ve tvém případě je
a_11 = 10, a_12 = 1, a_21 = 20, a_22 = 1, že ano. Nyní se zachováme jako dospělí lidé a tuto soustavu zapíšeme v maticovém tvaru:
| a_11 a_12 | |x_1| |b_1| | | | | = | | | a_21 a_22 | |x_2| |b_2|Přesuneme se někdy do roku 1750 ;) a použijeme tzv. Cramerovo pravidlo, které říká, že pro naši hledanou
x_i platí
det A_i
x_i = ---------,
det A
kde det A je determinant matice soustavy a det A_i je determinant téže matice, ovšem nahradíme-li i-tý sloupec maticí pravých stran, tj. například
| b_1 a_12 |
det A_1 = det | |.
| b_2 a_22 |
Determinant matice "2x2" vypočteš jako det A = a_11*a_22 - a_21*a_12, takže jde o rozdíl součinů diagonál v naznačeném směru. Samozřejmě platí, že determinant soustavy nesmí být nulový (matice soustavy musí být regulární).
Zcela stejně pak pro det A_1 a též det A_2 máš
| b_1 a_12 |
det A_1 = det | | = b_1*a_22 - b_2*a_12,
| b_2 a_22 |
| a_11 b_1 |
det A_2 = det | | = a_11*b_2 - a_21*b_1.
| a_21 b_2 |
No a teď už můžeš spočítat x_1, x_2, takže
det A_1 b_1*a_22 - b_2*a_12
x_1 = --------- = -----------------------
det A a_11*a_22 - a_21*a_12
det A_2 a_11*b_2 - a_21*b_1
x_2 = --------- = -----------------------
det A a_11*a_22 - a_21*a_12
A to je celý algoritmus, který potřebuješ.
Můžeme si zkusit dosadit tvé konkrétní numerické vstupy, pak
2*1 - 0,3*1 1,7
x_ 1 = ----------- = --- = -0,17,
10*1 - 20*1 -10
10*0,3 - 20*2 3 - 40 -37
x_2 = --------------- = ------ = ----- = 3,7
-10 -10 -10
Takže máme řešení y(x) = a*x + b = -0,17 + 3,7.
Pro tvůj konkrétní problém, kdy máš pořád a_12 = a_22 = 1, řešení zdegeneruje na jednodušší formu
det A_1 b_1 - b_2
x_1 = --------- = -------------
det A a_11 - a_21
det A_2 a_11*b_2 - a_21*b_1
x_2 = --------- = --------------------
det A a_11 - a_21
A výsledný kód by byl zhruba něco jako
def najdi_rovnici(a_1, a_2, b_1, b_2):
det_A = float(a_1 - a_2)
det_A_1 = b_1 - b_2
det_A_2 = a_1*b_2 - a_2*b_1
x_1 = det_A_1/det_A
x_2 = det_A_2/det_A
print 'y(x) := %s*x + %s' % (x_1, x_2)
return None
# nebo třeba
# return x_1, x_2
Když v Pythonu takový kód spustím pro tvé zadání, dostanu
>>> najdi_rovnici(10, 20, 2, 0.3) y(x) := -0.17*x + 3.7Jestli jsem někde udělal chybu, sorráč, nejsem účetní. Ale princip bys měl z toho pochopit.
from numpy import linalg # Matice A, matice B ma = [[10, 1], [20, 1]] mb = [2, 0.3] res = linalg.solve(ma, mb) print(res) # Vrací [ -0.17 3.7 ] # Výpočet trvá pár mikrosekund.Analytická metoda se spočte v řádu nanosekund. Ale podobně rychle to jde i v Julii:
A = [10 1; 20 1]
b = [2; 0.3]
A \ b
# Vrací
# 2-element Vector{Float64}:
# -0.17
# 3.7
Tiskni
Sdílej: