Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Open source modální textový editor Helix, inspirovaný editory Vim, Neovim či Kakoune, byl vydán ve verzi 25.07. Přehled novinek se záznamy terminálových sezení v asciinema v oznámení na webu. Detailně v CHANGELOGu na GitHubu.
1) Kdyz A = 10, tak B = 2 2) Kdyz A = 20, tak B = 0.3Kolik bude B, kdyz A bude nekde mezi temi 10 a 20? B klesa linearne, mezi 2 a 0.3 je primka. Takze napr. GnuPlot mi vykresli graf, ale neukaze vzorec vypoctu. Nevedeli byste nekdo, co je toto za vypocet? Kdyztak predem diky za pripadne tipy.
Řešení dotazu:
if A1/B1=5 && A2/B2=9 then An/Bn=?
B = -0,17 * A + 3,7
if A1/B1=5 && A2/B2=9 then An/Bn=?
if 10/2 && 20/0.3 then 13.7/?dava to nejaky smysl? Myslim jako vypocet, ne jako programovani, to je jen pseudokod.
2 = 10x + y ? = 13.8x + y 0,3 = 20x + y
7 = 5000x + y ? = 5850x + y 0,01 = 6700x + y
1) Kdyz A = 10, tak B = 2 2) Kdyz A = 20, tak B = 0,3prepiseme
1) Kdyz X = 10, tak Y = 2 2) Kdyz X = 20, tak Y = 0,3Zavislost nech je linearna (priamka), Ale daj obrazok grafu, z neho sa da urcit, aka je to funkcia (linerarna, exponencionalna, …) Ak priamka:
Y = A * X + Btak pre dve zavisle hodnoty rovnakej funkcie bude vseobecne:
Y1 = A * X1 + B Y2 = A * X2 + BDosadime hodnoty:
2=A*10+B 0,3=A*20+BA riesime sustavu rovnic s dvoma neznamymi (matematika),
2=10*A+B 0,3=20*A+BPouzijeme scitaciu metodu
2 = 10 * A + B 0,3 = 20 * A + B / *(-1) --------------------------- 2 = 10 * A + B -0,3 = (-20) * A + B (scitame riadky) -0,7 = (-10) * A + B / *(-1) 0,7 = 10 * A A = 0,07 A dosadime do 1, rovnice zo zadanie: 2 = 10 * A + B 2 = 0,07 * 10 + B 2 = 0,7 + B / -0,7 B = 2 - 0,7 B = 1,3Dostali sme:
A = 0,07 B = 1,3Vysledna zavislost je:
Y = 0,7 * X + 1,3
// y = K1 * x + K2 - rovnica priamky float x1,x2,x3,y1,y2,y3,K1,K2; x1 = 10; // x-ova suradnica bodu 1 y1 = 2; // y-ova suradnica bodu 1 x2 = 20; // x-ova suradnica bodu 2 y2 = 0.3; // y-ova suradnica bodu 2 // Vypocet K1 a K2: K1 = (y2-y1)/(x2-x1); K2 = y1 - K1 * x1; x3 = 14.5; // x-ova suradnica bodu 3 // Neznama suradnica y bodu 3: y3 = K1 * x3 + K2;
2.000000 = -0.170000 * 10.000000 + 3.700000 3.649000 = -0.170000 * 0.300000 + 3.700000Kod overaci:
#include <stdio.h> int main() { float x1,x2,x3,y1,y2,y3,K1,K2; x1 = 10; // x-ova suradnica bodu 1 y1 = 2; // y-ova suradnica bodu 1 x2 = 20; // x-ova suradnica bodu 2 y2 = 0.3; // y-ova suradnica bodu 2 // Vypocet K1 a K2: K1 = (y2-y1)/(x2-x1); K2 = y1 - K1 * x1; x3 = 14.5; // x-ova suradnica bodu 3 // Neznama suradnica y bodu 3: y3 = K1 * x3 + K2; x3=10; y3= K1 * x3 + K2; printf("%f = %f * %f + %f\n", y3, K1, x3, K2); x3=0.3; y3= K1 * x3 + K2; printf("%f = %f * %f + %f\n", y3, K1, x3, K2); return 0; }
#include <stdio.h> int main() { float x1,x2,x3,y1,y2,y3,K1,K2; x1 = 10; // x-ova suradnica bodu 1 y1 = 2; // y-ova suradnica bodu 1 x2 = 20; // x-ova suradnica bodu 2 y2 = 0.3; // y-ova suradnica bodu 2 // Vypocet K1 a K2: K1 = (y2-y1)/(x2-x1); K2 = y1 - K1 * x1; x3 = 14.5; // x-ova suradnica bodu 3 // Neznama suradnica y bodu 3: y3 = K1 * x3 + K2; x3=10; y3= K1 * x3 + K2; printf("%f = %f * %f + %f\n", y3, K1, x3, K2); x3=20; y3= K1 * x3 + K2; printf("%f = %f * %f + %f\n", y3, K1, x3, K2); return 0; }
linsolve([10*x + b - 2, 20*x + b - 0.3], (x, b))
, kde x, b
jsou importované symboly. Takže pak prostě
def fce(x): return -0.17*x + 3.7A odkud plyne předpoklad lineární závislosti? Je jasné, že Gnuplot propojí dva body přímkou. Čím jiným? Nekonečným počtem křivek? Má ta úloha opravdu lineární vztah ve svém základu?
Načež soused mě poučil, že kdyby tu ty hory nebyly, tak Slunce nemá kam zapadnout a je pořád světlo.Ale vždyť to je pravda, kdyby tady nebyla ta [neprůhledná] země pod tebou, tak vidíme Slunce i v noci -- zespodu.
10*x_1 +x_2 = 2 20*x_2 + x_2 = 0,3,což zobecníme (to chceš, jak jsem pochopil) a přepíšeme to do tvaru
a_11*x_1 + a_12*x_2 = b_1 a_21*x_1 + a_22*x_2 = b_2.Ve tvém případě je
a_11 = 10, a_12 = 1, a_21 = 20, a_22 = 1
, že ano. Nyní se zachováme jako dospělí lidé a tuto soustavu zapíšeme v maticovém tvaru:
| a_11 a_12 | |x_1| |b_1| | | | | = | | | a_21 a_22 | |x_2| |b_2|Přesuneme se někdy do roku 1750 ;) a použijeme tzv. Cramerovo pravidlo, které říká, že pro naši hledanou
x_i
platí
det A_i x_i = ---------, det Akde
det A
je determinant matice soustavy a det A_i
je determinant téže matice, ovšem nahradíme-li i-tý sloupec maticí pravých stran, tj. například
| b_1 a_12 | det A_1 = det | |. | b_2 a_22 |Determinant matice "2x2" vypočteš jako
det A = a_11*a_22 - a_21*a_12
, takže jde o rozdíl součinů diagonál v naznačeném směru. Samozřejmě platí, že determinant soustavy nesmí být nulový (matice soustavy musí být regulární).
Zcela stejně pak pro det A_1
a též det A_2
máš
| b_1 a_12 | det A_1 = det | | = b_1*a_22 - b_2*a_12, | b_2 a_22 | | a_11 b_1 | det A_2 = det | | = a_11*b_2 - a_21*b_1. | a_21 b_2 |No a teď už můžeš spočítat
x_1, x_2
, takže
det A_1 b_1*a_22 - b_2*a_12 x_1 = --------- = ----------------------- det A a_11*a_22 - a_21*a_12 det A_2 a_11*b_2 - a_21*b_1 x_2 = --------- = ----------------------- det A a_11*a_22 - a_21*a_12A to je celý algoritmus, který potřebuješ. Můžeme si zkusit dosadit tvé konkrétní numerické vstupy, pak
2*1 - 0,3*1 1,7 x_ 1 = ----------- = --- = -0,17, 10*1 - 20*1 -10 10*0,3 - 20*2 3 - 40 -37 x_2 = --------------- = ------ = ----- = 3,7 -10 -10 -10Takže máme řešení
y(x) = a*x + b = -0,17 + 3,7
.
Pro tvůj konkrétní problém, kdy máš pořád a_12 = a_22 = 1
, řešení zdegeneruje na jednodušší formu
det A_1 b_1 - b_2 x_1 = --------- = ------------- det A a_11 - a_21 det A_2 a_11*b_2 - a_21*b_1 x_2 = --------- = -------------------- det A a_11 - a_21A výsledný kód by byl zhruba něco jako
def najdi_rovnici(a_1, a_2, b_1, b_2): det_A = float(a_1 - a_2) det_A_1 = b_1 - b_2 det_A_2 = a_1*b_2 - a_2*b_1 x_1 = det_A_1/det_A x_2 = det_A_2/det_A print 'y(x) := %s*x + %s' % (x_1, x_2) return None # nebo třeba # return x_1, x_2Když v Pythonu takový kód spustím pro tvé zadání, dostanu
>>> najdi_rovnici(10, 20, 2, 0.3) y(x) := -0.17*x + 3.7Jestli jsem někde udělal chybu, sorráč, nejsem účetní. Ale princip bys měl z toho pochopit.
from numpy import linalg # Matice A, matice B ma = [[10, 1], [20, 1]] mb = [2, 0.3] res = linalg.solve(ma, mb) print(res) # Vrací [ -0.17 3.7 ] # Výpočet trvá pár mikrosekund.Analytická metoda se spočte v řádu nanosekund. Ale podobně rychle to jde i v Julii:
A = [10 1; 20 1] b = [2; 0.3] A \ b # Vrací # 2-element Vector{Float64}: # -0.17 # 3.7
Tiskni
Sdílej: