Byla vydána nová verze 4.6 (𝕏, Bluesky, Mastodon) multiplatformního open source herního enginu Godot (Wikipedie, GitHub). Přehled novinek i s náhledy v příspěvku na blogu.
Rozsáhlá modernizace hardwarové infrastruktury Základních registrů měla zabránit výpadkům digitálních služeb státu. Dnešnímu výpadku nezabránila.
Čínský startup Kimi představil open-source model umělé inteligence Kimi K2.5. Nová verze pracuje s textem i obrázky a poskytuje 'paradigma samosměřovaného roje agentů' pro rychlejší vykonávání úkolů. Kimi zdůrazňuje vylepšenou schopnost modelu vytvářet zdrojové kódy přímo z přirozeného jazyka. Natrénovaný model je dostupný na Hugging Face, trénovací skripty však ne. Model má 1 T (bilion) parametrů, 32 B (miliard) aktivních.
V Raspberry Pi OS lze nově snadno povolit USB Gadget Mode a díky balíčku rpi-usb-gadget (CDC-ECM/RNDIS) mít možnost se k Raspberry Pi připojovat přes USB kabel bez nutnosti konfigurování Wi-Fi nebo Ethernetu. K podporovaným Raspberry Pi připojeným do USB portu podporujícího OTG.
Konference Installfest 2026 proběhne o víkendu 28. a 29. března v budově FELu na Karlově náměstí v Praze. Přihlásit přednášku nebo workshop týkající se Linuxu, otevřených technologií, sítí, bezpečnosti, vývoje, programování a podobně lze do 18. února 0:15.
Fedora Flock 2026, tj. konference pro přispěvatele a příznivce Fedory, bude opět v Praze. Proběhne od 14. do 16. června. Na Flock navazuje DevConf.CZ 2026, který se uskuteční 18. a 19. června v Brně. Organizátoři konferencí hledají přednášející, vyhlásili Call for Proposals (CfP).
Z80-μLM je jazykový model 'konverzační umělé inteligence' optimalizovaný pro běh na 8-bitovém 4Mhz procesoru Z80 s 64kB RAM, technologii z roku 1976. Model používá 2-bitovou kvantizaci a trigramové hashování do 128 položek, což umožňuje zpracování textu i při velmi omezené paměti. Natrénovaný model se vejde do binárního souboru velkého pouhých 40 KB. Tento jazykový model patrně neprojde Turingovým testem 😅.
Digitální a informační agentura (DIA) na přelomu roku dokončila rozsáhlou modernizaci hardwarové infrastruktury základních registrů. Projekt za 236 milionů korun by měl zabránit výpadkům digitálních služeb státu, tak jako při loňských parlamentních volbách. Základní registry, tedy Registr práv a povinností (RPP), Informační systém základních registrů (ISZR) a Registr obyvatel (ROB), jsou jedním z pilířů veřejné správy. Denně
… více »Evropská komise (EK) zahájila nové vyšetřování americké internetové platformy 𝕏 miliardáře Elona Muska, a to podle unijního nařízení o digitálních službách (DSA). Vyšetřování souvisí se skandálem, kdy chatbot s umělou inteligencí (AI) Grok na žádost uživatelů na síti 𝕏 generoval sexualizované fotografie žen a dětí. Komise o tom dnes informovala ve svém sdělení. Americký podnik je podezřelý, že řádně neposoudil a nezmírnil rizika spojená se zavedením své umělé inteligence na on-line platformě.
Bratislava OpenCamp pokračuje vo svojej tradícii a fanúšikovia otvorených technológií sa môžu tešiť na 4. ročník, ktorý sa uskutoční 25. 4. 2026 na FIIT STU v Bratislave. V súčasnosti prebieha prihlasovanie prednášok a workshopov – ak máte nápad, projekt, myšlienku, o ktoré sa chcete podeliť s komunitou, OpenCamp je správne miesto pre vás.
1) Kdyz A = 10, tak B = 2 2) Kdyz A = 20, tak B = 0.3Kolik bude B, kdyz A bude nekde mezi temi 10 a 20? B klesa linearne, mezi 2 a 0.3 je primka. Takze napr. GnuPlot mi vykresli graf, ale neukaze vzorec vypoctu. Nevedeli byste nekdo, co je toto za vypocet? Kdyztak predem diky za pripadne tipy.
Řešení dotazu:
if A1/B1=5 && A2/B2=9 then An/Bn=?
B = -0,17 * A + 3,7
if A1/B1=5 && A2/B2=9 then An/Bn=?
if 10/2 && 20/0.3 then 13.7/?dava to nejaky smysl? Myslim jako vypocet, ne jako programovani, to je jen pseudokod.
2 = 10x + y ? = 13.8x + y 0,3 = 20x + y
7 = 5000x + y ? = 5850x + y 0,01 = 6700x + y
1) Kdyz A = 10, tak B = 2 2) Kdyz A = 20, tak B = 0,3prepiseme
1) Kdyz X = 10, tak Y = 2 2) Kdyz X = 20, tak Y = 0,3Zavislost nech je linearna (priamka), Ale daj obrazok grafu, z neho sa da urcit, aka je to funkcia (linerarna, exponencionalna, …) Ak priamka:
Y = A * X + Btak pre dve zavisle hodnoty rovnakej funkcie bude vseobecne:
Y1 = A * X1 + B Y2 = A * X2 + BDosadime hodnoty:
2=A*10+B 0,3=A*20+BA riesime sustavu rovnic s dvoma neznamymi (matematika),
2=10*A+B 0,3=20*A+BPouzijeme scitaciu metodu
2 = 10 * A + B 0,3 = 20 * A + B / *(-1) --------------------------- 2 = 10 * A + B -0,3 = (-20) * A + B (scitame riadky) -0,7 = (-10) * A + B / *(-1) 0,7 = 10 * A A = 0,07 A dosadime do 1, rovnice zo zadanie: 2 = 10 * A + B 2 = 0,07 * 10 + B 2 = 0,7 + B / -0,7 B = 2 - 0,7 B = 1,3Dostali sme:
A = 0,07 B = 1,3Vysledna zavislost je:
Y = 0,7 * X + 1,3
// y = K1 * x + K2 - rovnica priamky float x1,x2,x3,y1,y2,y3,K1,K2; x1 = 10; // x-ova suradnica bodu 1 y1 = 2; // y-ova suradnica bodu 1 x2 = 20; // x-ova suradnica bodu 2 y2 = 0.3; // y-ova suradnica bodu 2 // Vypocet K1 a K2: K1 = (y2-y1)/(x2-x1); K2 = y1 - K1 * x1; x3 = 14.5; // x-ova suradnica bodu 3 // Neznama suradnica y bodu 3: y3 = K1 * x3 + K2;
2.000000 = -0.170000 * 10.000000 + 3.700000 3.649000 = -0.170000 * 0.300000 + 3.700000Kod overaci:
#include <stdio.h>
int main()
{
float x1,x2,x3,y1,y2,y3,K1,K2;
x1 = 10; // x-ova suradnica bodu 1
y1 = 2; // y-ova suradnica bodu 1
x2 = 20; // x-ova suradnica bodu 2
y2 = 0.3; // y-ova suradnica bodu 2
// Vypocet K1 a K2:
K1 = (y2-y1)/(x2-x1);
K2 = y1 - K1 * x1;
x3 = 14.5; // x-ova suradnica bodu 3
// Neznama suradnica y bodu 3:
y3 = K1 * x3 + K2;
x3=10;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
x3=0.3;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
return 0;
}
#include <stdio.h>
int main()
{
float x1,x2,x3,y1,y2,y3,K1,K2;
x1 = 10; // x-ova suradnica bodu 1
y1 = 2; // y-ova suradnica bodu 1
x2 = 20; // x-ova suradnica bodu 2
y2 = 0.3; // y-ova suradnica bodu 2
// Vypocet K1 a K2:
K1 = (y2-y1)/(x2-x1);
K2 = y1 - K1 * x1;
x3 = 14.5; // x-ova suradnica bodu 3
// Neznama suradnica y bodu 3:
y3 = K1 * x3 + K2;
x3=10;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
x3=20;
y3= K1 * x3 + K2;
printf("%f = %f * %f + %f\n", y3, K1, x3, K2);
return 0;
}
linsolve([10*x + b - 2, 20*x + b - 0.3], (x, b)), kde x, b jsou importované symboly. Takže pak prostě
def fce(x): return -0.17*x + 3.7A odkud plyne předpoklad lineární závislosti? Je jasné, že Gnuplot propojí dva body přímkou. Čím jiným? Nekonečným počtem křivek? Má ta úloha opravdu lineární vztah ve svém základu?
Načež soused mě poučil, že kdyby tu ty hory nebyly, tak Slunce nemá kam zapadnout a je pořád světlo.Ale vždyť to je pravda, kdyby tady nebyla ta [neprůhledná] země pod tebou, tak vidíme Slunce i v noci -- zespodu.
10*x_1 +x_2 = 2 20*x_2 + x_2 = 0,3,což zobecníme (to chceš, jak jsem pochopil) a přepíšeme to do tvaru
a_11*x_1 + a_12*x_2 = b_1 a_21*x_1 + a_22*x_2 = b_2.Ve tvém případě je
a_11 = 10, a_12 = 1, a_21 = 20, a_22 = 1, že ano. Nyní se zachováme jako dospělí lidé a tuto soustavu zapíšeme v maticovém tvaru:
| a_11 a_12 | |x_1| |b_1| | | | | = | | | a_21 a_22 | |x_2| |b_2|Přesuneme se někdy do roku 1750 ;) a použijeme tzv. Cramerovo pravidlo, které říká, že pro naši hledanou
x_i platí
det A_i
x_i = ---------,
det A
kde det A je determinant matice soustavy a det A_i je determinant téže matice, ovšem nahradíme-li i-tý sloupec maticí pravých stran, tj. například
| b_1 a_12 |
det A_1 = det | |.
| b_2 a_22 |
Determinant matice "2x2" vypočteš jako det A = a_11*a_22 - a_21*a_12, takže jde o rozdíl součinů diagonál v naznačeném směru. Samozřejmě platí, že determinant soustavy nesmí být nulový (matice soustavy musí být regulární).
Zcela stejně pak pro det A_1 a též det A_2 máš
| b_1 a_12 |
det A_1 = det | | = b_1*a_22 - b_2*a_12,
| b_2 a_22 |
| a_11 b_1 |
det A_2 = det | | = a_11*b_2 - a_21*b_1.
| a_21 b_2 |
No a teď už můžeš spočítat x_1, x_2, takže
det A_1 b_1*a_22 - b_2*a_12
x_1 = --------- = -----------------------
det A a_11*a_22 - a_21*a_12
det A_2 a_11*b_2 - a_21*b_1
x_2 = --------- = -----------------------
det A a_11*a_22 - a_21*a_12
A to je celý algoritmus, který potřebuješ.
Můžeme si zkusit dosadit tvé konkrétní numerické vstupy, pak
2*1 - 0,3*1 1,7
x_ 1 = ----------- = --- = -0,17,
10*1 - 20*1 -10
10*0,3 - 20*2 3 - 40 -37
x_2 = --------------- = ------ = ----- = 3,7
-10 -10 -10
Takže máme řešení y(x) = a*x + b = -0,17 + 3,7.
Pro tvůj konkrétní problém, kdy máš pořád a_12 = a_22 = 1, řešení zdegeneruje na jednodušší formu
det A_1 b_1 - b_2
x_1 = --------- = -------------
det A a_11 - a_21
det A_2 a_11*b_2 - a_21*b_1
x_2 = --------- = --------------------
det A a_11 - a_21
A výsledný kód by byl zhruba něco jako
def najdi_rovnici(a_1, a_2, b_1, b_2):
det_A = float(a_1 - a_2)
det_A_1 = b_1 - b_2
det_A_2 = a_1*b_2 - a_2*b_1
x_1 = det_A_1/det_A
x_2 = det_A_2/det_A
print 'y(x) := %s*x + %s' % (x_1, x_2)
return None
# nebo třeba
# return x_1, x_2
Když v Pythonu takový kód spustím pro tvé zadání, dostanu
>>> najdi_rovnici(10, 20, 2, 0.3) y(x) := -0.17*x + 3.7Jestli jsem někde udělal chybu, sorráč, nejsem účetní. Ale princip bys měl z toho pochopit.
from numpy import linalg # Matice A, matice B ma = [[10, 1], [20, 1]] mb = [2, 0.3] res = linalg.solve(ma, mb) print(res) # Vrací [ -0.17 3.7 ] # Výpočet trvá pár mikrosekund.Analytická metoda se spočte v řádu nanosekund. Ale podobně rychle to jde i v Julii:
A = [10 1; 20 1]
b = [2; 0.3]
A \ b
# Vrací
# 2-element Vector{Float64}:
# -0.17
# 3.7
Tiskni
Sdílej: