Raspberry Pi Connect, tj. oficiální služba Raspberry Pi pro vzdálený přístup k jednodeskovým počítačům Raspberry Pi z webového prohlížeče, byla vydána v nové verzi 2.5. Nejedná se už o beta verzi.
Google zveřejnil seznam 1272 projektů (vývojářů) od 185 organizací přijatých do letošního, již jednadvacátého, Google Summer of Code. Plánovaným vylepšením v grafických a multimediálních aplikacích se věnuje článek na Libre Arts.
Byla vydána (𝕏) dubnová aktualizace aneb nová verze 1.100 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.100 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.
Open source platforma Home Assistant (Demo, GitHub, Wikipedie) pro monitorování a řízení inteligentní domácnosti byla vydána v nové verzi 2025.5.
OpenSearch (Wikipedie) byl vydán ve verzi 3.0. Podrobnosti v poznámkách k vydání. Jedná se o fork projektů Elasticsearch a Kibana.
PyXL je koncept procesora, ktorý dokáže priamo spúštat Python kód bez nutnosti prekladu ci Micropythonu. Podľa testov autora je pri 100 MHz približne 30x rýchlejší pri riadeni GPIO nez Micropython na Pyboard taktovanej na 168 MHz.
Grafana (Wikipedie), tj. open source nástroj pro vizualizaci různých metrik a s ní související dotazování, upozorňování a lepší porozumění, byla vydána ve verzi 12.0. Přehled novinek v aktualizované dokumentaci.
Raspberry Pi OS, oficiální operační systém pro Raspberry Pi, byl vydán v nové verzi 2025-05-06. Přehled novinek v příspěvku na blogu Raspberry Pi a poznámkách k vydání. Pravděpodobně se jedná o poslední verzi postavenou na Debianu 12 Bookworm. Následující verze by již měla být postavena na Debianu 13 Trixie.
Richard Stallman dnes v Liberci přednáší o svobodném softwaru a svobodě v digitální společnosti. Od 16:30 v aule budovy G na Technické univerzitě v Liberci. V anglickém jazyce s automaticky generovanými českými titulky. Vstup je zdarma i pro širokou veřejnost.
sudo-rs, tj. sudo a su přepsáné do programovacího jazyka Rust, nahradí v Ubuntu 25.10 klasické sudo. V plánu je také přechod od klasických coreutils k uutils coreutils napsaných v Rustu.
def JHA(input): return "AAA"+SHA256(input)je kryptograficky bezpečná (dokud je jen SHA256 bezpečná), ale zjevně její výstup není moc náhodný. K extrakci entropie se používá entropy juicer.
Ano znamena. Pokud ma byt hashovaci funkce bezpecna tak vystup by mel mit uniformni rozlozeni.Já chápu kryptograficky bezpečnou hashovací funkci tak, že garantuje, že ve výstupu bude alespoň n bitů entropie (přesněji, že spočítání kolize bude mít náročnost 2^n), ale že výstup může být klidně větší než n. Například definice na Wikipedii pak o náhodnosti a uniformitě (celého) výstupu nemluví vůbec. Ostatně, byly současně používané SHA designované with this in mind nebo je to jenom takový by-product?
Hasovaci funkce da vzdy pro stejna vstupni data stejny vystup,Jakykoli algoritmus da vzdy pro stejna vstupni data stejny vystup.
nepouziva se na kryptovani ale na podpisovani a overovani.Nepouziva se na sifrovani, ale kryptograficka primitiva jsou prevoditelna, takze z bezpecne hash funkce muzes vytvorit PRF a z PRF sestavit blokovou sifru. Viz Luby-Rackoff theorem: https://en.wikipedia.org/wiki/Feistel_cipher
Hasovaci funkce da vzdy pro stejna vstupni data stejny vystup,Jakykoli algoritmus da vzdy pro stejna vstupni data stejny vystup.Plati jen pokud je PRN generator zavisly pouze na vstupnich datech algoritmu, coz ale pokladam za oslabeni sifry ( to plati samozrejmne jenom u sifrovacich algorimtu kde do sifrovaciho procesu vstupuje nahodne cislo )
A ja osobne povazuju kolobezku za motorove vozidlo.to hodne vysvetluje
Existuje obecne prijimany pohled na to, co je to algoritmus, jeho vstup a determinismus/nedeterminismus pri jeho provadeni.nedeterminismus je neco jinyho nez nahodnost.
Pohled ze "jakakoli nahodnost" je vstupem algoritmu je v tomto ohledu novatorskydiky za uznani. Jestli bych si to nemel patentovat...
A randomized algorithm is an algorithm which employs a degree of randomness as part of its logic. The algorithm typically uses uniformly random bits as an auxiliary input
Jakykoli algoritmus da vzdy pro stejna vstupni data stejny vystup.Programoval si někdy?
Problém je spíš v tom, že uživatel si není vědom1 všech vstupů – proto mu výstup může někdy přijít náhodný a program nedeterministický.
[1] což nemusí být úplně jeho vina – program může být napsaný dost záludně, tak, že některé vstupy nejsou na první pohled vidět, nedají se intuitivně odhadnout nebo jsou úplně nesmyslné
Pak i když budete používat na dvou webech stejné heslo, hash bude jiný, a nebude možné ani předpočítat univerzální duhovou tabulku.Nutno podotknout, že to sice zabrání útoku při ukradení databáze, ale heslo je pořád vidět v okamžiku, kdy ho uživatel posílá - když se přihlašuje. A v ten okamžik si ho může správce nebo útočník někam bokem poznamenat. Protokoly na prokázání se, při kterých se heslo protistrana nedozví nikdy, existují, ale jsou podstatně složitější.
Někteří lidé bohužel považují hashování za druh šifrování – říkají např. „to heslo je zašifrované pomocí MD5“ – a pak to vede k těmto zmatkům. Někdy se říká „jednosměrná šifra“ což je ale stále zavádějící a podle mého špatně.
Hashování je jednosměrná funkce. Jejím definičním oborem (vstupem) je pole bajtů o libovolné délce. Jejím oborem hodnot (výstupem) je pole bajtů1 s fixní (a malou) délkou.
Je logické, že to nemůže být prostá funkce – pro různé vstupy může být výstupem stejná hodnota (hash). Tyto kolize z principu musí existovat.
Dobré hashovací funkce se vyznačují tím, že je tyto kolize velmi náročné najít. Když znáš hash, mělo by být prakticky nemožné najít původní vstup – mělo by to být tak výpočetně náročné, že to se současnou technikou nikdo nedokáže. A i kdyby (jednou) dokázal, z principu najde jen jeden z mnoha možných vstupů – nemá jistotu, že je to ten původní, ze kterého byl hash vypočten. (proto „jednosměrná funkce“).
Další dobrou vlastností je to, že když se vstup změní byť jen nepatrně (třeba o jediný znak/bajt), hodnota hashe se změní zásadně a je to vidět na první pohled (např. c105364f1a847c07860ad7bd9d23eef0
vs. 03f02c6d299c70dcc8d23d14d0c8466d
).
Praktické využití:
d27a7f038b715e0b8a438a09704e3102150a4158a7f1372bb6e0e658c00e7c0a
“ a zpátky ti přijde odpověď: „má ho ten a ten, stáhni si ho od něj“ (zatímco, kdybys používal jako identifikátor název souborů, bude problém to, že jeden soubor může být pojmenovaný různě a naopak soubory s různým obsahem si mohou dva lidé pojmenovat stejně)
[1] někdy chceš mít vstup textový (např. heslo) a výstup taky (např. aby to šlo vytisknout – Base64, Hex), takže musíš hashování obalit funkcemi na převod mezi textem a bajty – ale to nic nemění na tom, že samotná hashovací funkce pracuje jen a pouze s bajty, nějaká textová reprezentace se jí netýká
[2] my nebo útočník, který by ukradl naši databázi
Tiskni
Sdílej: