Byla vydána verze 4.0 multiplatformního integrovaného vývojového prostředí (IDE) pro rychlý vývoj aplikaci (RAD) ve Free Pascalu Lazarus (Wikipedie). Přehled novinek v poznámkách k vydání. Využíván je Free Pascal Compiler (FPC) 3.2.2.
Podpora Windows 10 končí 14. října 2025. Připravovaná kampaň Konec desítek (End of 10) může uživatelům pomoci s přechodem na Linux.
Již tuto středu proběhne 50. Virtuální Bastlírna, tedy dle římského číslování L. Bude L značit velikost, tedy více diskutujících než obvykle, či délku, neboť díky svátku lze diskutovat dlouho do noci? Bude i příští Virtuální Bastlírna virtuální nebo reálná? Nejen to se dozvíte, když dorazíte na diskuzní večer o elektronice, softwaru, ale technice obecně, který si můžete představit jako virtuální posezení u piva spojené s učenou
… více »Český statistický úřad rozšiřuje Statistický geoportál o Datový portál GIS s otevřenými geografickými daty. Ten umožňuje stahování datových sad podle potřeb uživatelů i jejich prohlížení v mapě a přináší nové možnosti v oblasti analýzy a využití statistických dat.
Kevin Lin zkouší využívat chytré brýle Mentra při hraní na piano. Vytváří aplikaci AugmentedChords, pomocí které si do brýlí posílá notový zápis (YouTube). Uvnitř brýlí běží AugmentOS (GitHub), tj. open source operační systém pro chytré brýle.
Jarní konference EurOpen.cz 2025 proběhne 26. až 28. května v Brandýse nad Labem. Věnována je programovacím jazykům, vývoji softwaru a programovacím technikám.
Na čem aktuálně pracují vývojáři GNOME a KDE Plasma? Pravidelný přehled novinek v Týden v GNOME a Týden v KDE Plasma.
Před 25 lety zaplavil celý svět virus ILOVEYOU. Virus se šířil e-mailem, jenž nesl přílohu s názvem I Love You. Příjemci, zvědavému, kdo se do něj zamiloval, pak program spuštěný otevřením přílohy načetl z adresáře e-mailové adresy a na ně pak „milostný vzkaz“ poslal dál. Škody vznikaly jak zahlcením e-mailových serverů, tak i druhou činností viru, kterou bylo přemazání souborů uložených v napadeném počítači.
Byla vydána nová major verze 5.0.0 svobodného multiplatformního nástroje BleachBit (GitHub, Wikipedie) určeného především k efektivnímu čištění disku od nepotřebných souborů.
namespace { template<typename CharType = wchar_t> std::basic_istream<CharType>& operator>>(std::basic_istream<CharType>& inputStream, std::basic_string<CharType>& line) { std::getline(inputStream, line); return inputStream; } } template<typename CharType = char> auto ReadLines(std::wstring path) { auto inputStream = new std::ifstream(path); using iterator = std::istream_iterator<std::basic_string<CharType>>; auto begin = std::shared_ptr<iterator>( new iterator(*inputStream), [inputStream](auto* iterator) { delete iterator; delete inputStream; } ); return begin; }Je toto správne riešenie? Alebo na to idem zle? Lebo fungovať mi to funguje. Ak viete o niečom priamočiarejšom tak sem s tým. Ďakujem.
auto begin = ReadLines(L"c:\test\newFile21.txt"); for (auto it = *begin; it != std::istream_iterator<std::string>(); ++it) { std::cout << ":" << *it << "n"; }
#include <fstream> #include <iostream> #include <stdexcept> template <typename T> void read_lines(const std::string &path, T &&handler) { std::ifstream s{}; s.open(path); if (!s.is_open()) throw std::runtime_error{"Cannot open file"}; std::string str{}; while (std::getline(s, str).good()) handler(str); } int main() { try { read_lines("abc.txt", [](const std::string &s) { std::cout << s << std::endl; }); } catch (const std::runtime_error &ex) { std::cout << ex.what() << std::endl; } return 0; }
Začal bych od jednoduchého příkladu — implicitní iterace po slovech. To se zařídí třeba takhle:
#include <fstream> #include <iostream> #include <iterator> #include <string> namespace { template<typename C> struct ifstream_iterable { ifstream_iterable(const std::string &path) : stream_{path} {} auto begin() { return iterator{stream_}; } auto end() { return iterator{}; } private: typedef std::istream_iterator<std::basic_string<C>, C> iterator; std::basic_ifstream<C> stream_; }; } // namespace int main() { for (auto &w : ifstream_iterable<wchar_t>{"/proc/cpuinfo"}) std::wcout << w << std::endl; }
To bychom měli. Teď je otázka, jak z toho^^^ udělat iteraci po řádcích. Předně pár poznámek k tématu:
>>
je mírně špatně v mezích zákona, protože deklarace je hodně podobná této deklaraci v headeru <string>
, což sice na první pohled nevadí, ale na druhý pohled tam hraje roli až příliš mnoho složitých detailů kolem pravidel pro hledání identifikátorů. Drobná změna standardu a/nebo (kni)hovny může vést k tomu, že operátor se buď vůbec nepoužije, nebo začne být v konfliktu s operátory z (kni)hovny. Drobnou modifikací se mi podařilo vyrobit (proti)příklad, kdy clang++
i g++
kód přeloží bez varování, ale g++
„přetížený“ operátor použije, zatímco clang++
nikoliv.std::string
(což je sice technicky možné, ale z hlediska kompatibility a udržovatelnosti kódu je vhodné se takových nápadů vyvarovat)Co tedy podniknout? Třeba tohle:
#include <fstream> #include <iostream> #include <iterator> #include <string> #include <utility> namespace { template <typename C> struct line { std::basic_istream<C>& operator <<(std::basic_istream<C> &stream) { std::getline(stream, str_); return stream; } operator const std::basic_string<C>&() const & { return str_; } operator std::basic_string<C>&() & { return str_; } // zde se nepoužije operator std::basic_string<C>() && { return std::move(str_); } // -dtto- private: std::basic_string<C> str_; }; template <typename C> std::basic_istream<C>& operator >>(std::basic_istream<C> &stream, line<C> &str) { str << stream; return stream; } template<typename C> struct ifstream_iterable { ifstream_iterable(const std::string &path) : stream_{path} {} auto begin() { return iterator{stream_}; } auto end() { return iterator{}; } private: typedef std::istream_iterator<line<C>, C> iterator; std::basic_ifstream<C> stream_; }; } // namespace int main() { for (const std::wstring &l : ifstream_iterable<wchar_t>{"/proc/cpuinfo"}) std::wcout << l << std::endl; }
Tohle^^^ nedědí od základních typů, nevyvolává příliš mnoho nespecifikovaných rohových případů, nepoužívá kámoše a vystačí si s jednou třídou (dělnickou), kterou lze konvertovat na odpovídající string
. (Pro složitější konverze do jiného API si lze napsat deduction guides, ale to už je jiné téma. V této podobě se kód přeloží s C++ 14, 17 i 20, zatímco s deduction guides by vyžadoval minimálně C++17.)
Ještě závěrem dodám (a předejdu tak, doufám, některým komentářům), že někteří lidé mají utkvělou špatnou představu o sousloví return std::move(...);
— myslí si, že něco takového nedává smysl a že by to nemělo existovat. Samozřejmě se mýlí, jak jinak; tady jsou k tomu předdrobnosti i podrobnosti.
A když nad tím znova přemýšlím (což rozhodně nedělám často), čitelnější to bude bez toho nestandardního operátoru <<
, který nijak neinteraguje s (kni)hovnou a jenom všeho všudy mate čtenáře (včetně mě). Takže raději třeba takto:
#include <fstream> #include <iostream> #include <iterator> #include <string> #include <utility> namespace { template <typename C> struct line { operator const std::basic_string<C>&() const & { return str_; } operator std::basic_string<C>&() & { return str_; } operator std::basic_string<C>() && { return std::move(str_); } // nepoužito private: std::basic_string<C> str_; }; template <typename C> std::basic_istream<C>& operator >>(std::basic_istream<C> &stream, line<C> &str) { std::getline(stream, static_cast<std::basic_string<C>&>(str)); return stream; } template<typename C> struct ifstream_iterable { ifstream_iterable(const std::string &path) : stream_{path} {} auto begin() { return iterator{stream_}; } auto end() { return iterator{}; } private: typedef std::istream_iterator<line<C>, C> iterator; std::basic_ifstream<C> stream_; }; } // namespace int main() { for (const std::wstring &l : ifstream_iterable<wchar_t>{"/proc/cpuinfo"}) std::wcout << l << std::endl; }
Ale ak pri smartpointeroch používate deleter tak sa použitiu delete nevyhnete.
To je sice pravda, ale právě nadužívání dynamické alokace je u C++ poměrně častá chyba. Zrovna třeba statement delete iterator;
není dobrý nápad (a kdekoho přiměje zvednout obočí), protože iterátor má být (a většinou je) malý kousek dat (něco jako 16 B, dejme tomu), který se dá a má předávat všude hodnotou. (Samozřejmě kromě případu, kdy je potřeba z více míst měnit jeden iterátor, tj. mít něco jako dvouhvězdičkový pointer.)
Ještě bych poznamenal, jen tak pro úplnost, že příklad v dotazu by byl lepší s použitím std::unique_ptr
místo std::shared_ptr
. Zatímco std::unique_ptr
je jednoduchý zapouzdřený pointer, který vyjadřuje exkluzivní vlastnictví a vlastní z jednoho kontextu jeden kousek dat, std::shared_ptr
je složitá mašinerie s atomickým reference-countingem. Uvnitř v implementaci std::shared_ptr
neukazuje přímo na data, která spravuje, nýbrž na svou vlastní dynamickou strukturu, ve které má (kromě pointeru) také atomické počítadlo referencí a pár dalších vychytávek. (Dlužno navíc dodat, v souvislosti s atomickým počítadlem, že jedna atomická instrukce může stát čas srovnatelný s řádově tisícem sčítání.) Dá se říct, že std::shared_ptr
je v jistém smyslu thread-safe, byť s omezeními:
std::shared_ptr
, každou z jiného vlákna, lze používat paralelně zcela bez omezení.std::shared_ptr
několika vlákny (například rozumně atomické přiřazení toho sdíleného pointeru) ovšem samo od sebe atomické není; k tomu slouží specializace std::atomic<std::shared_ptr<...>>
.Zkrátka a dobře (nebo zdlouha a špatně, teď nevím),
std::unique_ptr
místo std::shared_ptr
, je to jasná volba, zejména z hlediska efektivity a jednoznačnosti vlastnictví objektů. Atomický reference-counting je potřebný jenom velmi zřídka, nikoliv zhusta.
Tiskni
Sdílej: