Pro moddery Minecraftu: Java edice Minecraftu bude bez obfuskace.
Národní identitní autorita, tedy NIA ID, MeG a eOP jsou nedostupné. Na nápravě se pracuje [𝕏].
Americký výrobce čipů Nvidia se stal první firmou na světě, jejíž tržní hodnota dosáhla pěti bilionů USD (104,5 bilionu Kč). Nvidia stojí v čele světového trhu s čipy pro umělou inteligenci (AI) a výrazně těží z prudkého růstu zájmu o tuto technologii. Nvidia již byla první firmou, která překonala hranici čtyř bilionů USD, a to letos v červenci.
Po Canonicalu a SUSE oznámil také Red Hat, že bude podporovat a distribuovat toolkit NVIDIA CUDA (Wikipedie).
TrueNAS (Wikipedie), tj. open source storage platforma postavená na Linuxu, byl vydán ve verzi 25.10 Goldeye. Přináší NVMe over Fabric (NVMe-oF) nebo OpenZFS 2.3.4.
Byla vydána OpenIndiana 2025.10. Unixový operační systém OpenIndiana (Wikipedie) vychází z OpenSolarisu (Wikipedie).
České základní a střední školy čelí alarmujícímu stavu kybernetické bezpečnosti. Až 89 % identifikovaných zranitelností v IT infrastruktuře vzdělávacích institucí dosahuje kritické úrovně, což znamená, že útočníci mohou vzdáleně převzít kontrolu nad klíčovými systémy. Školy navíc často provozují zastaralé technologie, i roky nechávají zařízení bez potřebných aktualizací softwaru a používají k nim pouze výchozí, všeobecně známá
… více »Během tradiční ceremonie k oslavě Dne vzniku samostatného československého státu (28. října) byl vyznamenán medailí Za zásluhy (o stát v oblasti hospodářské) vývojář 3D tiskáren Josef Průša. Letos byly uděleny pouze dvě medaile Za zásluhy o stát v oblasti hospodářské, druhou dostal informatik a manažer Ondřej Felix, který se zabývá digitalizací státní správy.
Tor Browser, tj. fork webového prohlížeče Mozilla Firefox s integrovaným klientem sítě Tor přednastavený tak, aby přes tuto síť bezpečně komunikoval, byl vydán ve verzi 15.0. Postaven je na Firefoxu ESR 140.
Bylo oznámeno (cs) vydání Fedora Linuxu 43. Ve finální verzi vychází šest oficiálních edic: Fedora Workstation a Fedora KDE Plasma Desktop pro desktopové, Fedora Server pro serverové, Fedora IoT pro internet věcí, Fedora Cloud pro cloudové nasazení a Fedora CoreOS pro ty, kteří preferují neměnné systémy. Vedle nich jsou k dispozici také další atomické desktopy, spiny a laby. Podrobný přehled novinek v samostatných článcích na stránkách Fedora Magazinu: Fedora Workstation, Fedora KDE Plasma Desktop, Fedora Silverblue a Fedora Atomic Desktops.
Ty asi nebudeš Pražák, co?! 
Mimochodom, vlastnosť visited musíš mať implementovanú aj v pôvodnej verzii algoritmu.
Nemusím. Ne-mu-sím!
Standartně jsou všechny vrcholy zařazeny do fronty při inicializaci algoritmu a jejich náležení/nenáležení frontě již samo o sobě udává, zda-li byl vrchol již "objeven" či nikoliv.
.
Tohle jsou samozřejmě další dobře známé vlastnosti Dijkstrova algoritmu (dokonce i ta možnost využití Fibonacciho haldy se udává snad v každém popisu algoritmu), některé vlastnosti jsem dokonce zmínil v textu, ale oč tu běží je čistě implementační záležitost a vlastnosti "přiohnutého" algoritmu.
?
Mohl bys tedy ukázat pseudokód (rozuměj popis algoritmu), který by bez této "funkce" fungoval?
Uááá. Agoritmus, který tuto funkci nepotřebuje je právě ten ukázkový kód. O něm to celý je!
A pokud ne, jak je možné, že se o tom "moc neví"?
To že se o nutnosti této funkce použité fronty "moc neví" je myšleno tak, že si to člověk naplno uvědomí, až když musí algoritmus implementovat, protože takovou frontu obyčejně nemá k dispozici. Rozhodně to ale neni nějaký zajímavý a málo probádaný teoretický aspekt Dijkstrova algoritmu jako takového.
. Já to nedočetl, protože nechápu, proč bych měl algoritmus zpomalit kvůli tomu, že knihovna neobsahuje triviální funkci nad binární haldou. Klíčové slovo je to _nechápu_
. Tak se nezlob...
Ale tohle nám asi neříkali ani na matfyzuPredmet slozitost, fibbonaciho haldy i jejich aplikace v Dijstrove algoritmu se probiraly... ;).
...
Co mě na matfyzu vždycky pobaví je předmět, který probere látku vcelku povrchně, ale nakousne toho co nejvíc. Za pár semestrů ho totiž v rámci takřka stejného sylabu rozšíří další. Viz třeba ADS - Složitost.
Jinak co se algoritmů týče, tak si člověk (nejen) na matfyzu vystačí s Introduction to algorithms z MIT. Jen je třeba dávat pozor v předmětech, kde se pracuje s B-stromy - zavádějí je tam trochu jinak (ve výsledku je to samozřejmě stejné) a algoritmy operací jsou taky trochu jiné (ve srovnání s evergreenem od prof. Pokorného či zmíněných ADS).
B____C \ / \/ A | | Ddélky hrany tyto d(A,D)=3, d(A,C)=4, d(A,B)=1, d(B,C)=1 začneme v A, do fronty přijde B(1), D(3), C(4); v dalším kroku teda zkoumám B, C dám nový odhad 2 takže fronta "nevisited" vrcholů je D(3), C(2) což by asi být nemělo, ne? (kdyby z D vycházela nějaká hrana a na ní byl nalepenej nějakej graf H, přidali bychom ještě hranu CD s ohodnocením třeba 0.5, tak se správně nenajde nejkratší cesta do H přes AB, BC, CD, ..)
Možná to neni z popisu zcela zřejmý, ale použitá fronta je samozřejmě stále prioritní. Situace, že by v ní byla posloupnost D(3), C(2) tak nemůže nastat.
Prošel jsem si tebou uváděnej příklad, a nevidim v tom problém, na danym grafu algoritmus funguje korektně.
Možná to neni z popisu zcela zřejmý, ale použitá fronta je samozřejmě stále prioritní. Situace, že by v ní byla posloupnost D(3), C(2) tak nemůže nastat.Tak to jsem teda nepochopil. Píšeš, že "Prioritní fronta ze standartní šablonové knihovny STL totiž touto vlastností neoplývá...", kde "touto vlastností" sem pochopil jako změna priority. Tedy jsem se domníval, že fronta 3, 4, 5 se nepřeuspořádá, pokud změním prioritu u druhého prvku na 2, tedy bude v podobě 3, 2, 5. Takhle to teda není? Pokud ne, tak jsem nějak nepochopil celý blogpost. Jinak na tom "nakresleném grafu" by to neselhalo, domnívám se, že by to selhalo až na grafu, kde z D vede nějaká hrana a přidáme ještě hranu CD váhy 0.5 (což jsem naznačil v minulém příspěvku v závorce).
Tak to jsem teda nepochopil. Píšeš, že "Prioritní fronta ze standartní šablonové knihovny STL totiž touto vlastností neoplývá...", kde "touto vlastností" sem pochopil jako změna priority. Tedy jsem se domníval, že fronta 3, 4, 5 se nepřeuspořádá, pokud změním prioritu u druhého prvku na 2, tedy bude v podobě 3, 2, 5. Takhle to teda není? Pokud ne, tak jsem nějak nepochopil celý blogpost.
Změnu priority fronta z STL neumožňuje, proto se taky místo změny priority přidává uzel do fronty znovu, čímž se samozřejmě zařadí na správné místo. Vrchol tedy může být ve frontě několikrát, přičemž jen jeho první výskyt je "platný".
Jinak na tom "nakresleném grafu" by to neselhalo, domnívám se, že by to selhalo až na grafu, kde z D vede nějaká hrana a přidáme ještě hranu CD váhy 0.5 (což jsem naznačil v minulém příspěvku v závorce).
Uvažoval jsem samozřejmě ten rozšířený graf (s hranou CD)
Takže sorry, podcenil jsem tě
A Kefalín, čo Vy si predstavujete pod takým "důkaz správnosti algoritmu"?! 
Obávám se, že ten už si budeš muset udělat sám. Nejsem matfyzák, takže se do podobných "experimentů" pouštím jen v případech krajní nouze, což zrovna tenhle není...
Slíbil jsem, že zde vyslovím můj názor na složitost takto modifikovaného algoritmu, která je IMHO (a už to tady zaznělo stále O(|H|log|U|).
Jediné co se mění je počet prvků(uzlů) v prioritní frontě, který oproti "originálnímu" algoritmu může být až |U|^2. Nicméně proto, že log(|U|^2) = 2log|U| = O(log|U|), zůstává asymptotická časová složitost algoritmu O(|H|log|U|). Skutečná složitost nicméně samozřejmě naroste, ale na "běžných" grafech IMHO nijak výrazně.
Nějaké námitky?
Tak si odpovím sám. Zas tak růžový to asi přece jenom nebude... "Hlavní" cyklus se může provést až |H|*|U|, zařazení do fronty pak má složitost log(|H|*|U|). Celková asymptotická složitost řešení tedy spíše bude O(|H|*|U| + log(|H|*|U|)) = O(|H|*|U|), tedy horší, než u "originálu".
Tiskni
Sdílej: