F-Droid bannerem na svých stránkách a také v aplikacích F-Droid a F-Droid Basic upozorňuje na iniciativu Keep Android Open. Od září 2026 bude Android vyžadovat, aby všechny aplikace byly registrovány ověřenými vývojáři, aby mohly být nainstalovány na certifikovaných zařízeních Android. To ohrožuje alternativní obchody s aplikacemi jako F-Droid a možnost instalace aplikací mimo oficiální obchod (sideloading).
Svobodná historická realtimová strategie 0 A.D. (Wikipedie) byla vydána ve verzi 28 (0.28.0). Její kódový název je Boiorix. Představení novinek v poznámkách k vydání. Ke stažení také na Flathubu a Snapcraftu.
Multimediální server a user space API PipeWire (Wikipedie) poskytující PulseAudio, JACK, ALSA a GStreamer rozhraní byl vydán ve verzi 1.6.0 (Bluesky). Přehled novinek na GitLabu.
UBports, nadace a komunita kolem Ubuntu pro telefony a tablety Ubuntu Touch, vydala Ubuntu Touch 24.04-1.2 a 20.04 OTA-12.
Byla vydána (Mastodon, 𝕏) nová stabilní verze 2.0 otevřeného operačního systému pro chytré hodinky AsteroidOS (Wikipedie). Přehled novinek v oznámení o vydání a na YouTube.
WoWee je open-source klient pro MMORPG hru World of Warcraft, kompatibilní se základní verzí a rozšířeními The Burning Crusade a Wrath of the Lich King. Klient je napsaný v C++ a využívá vlastní OpenGL renderer, pro provoz vyžaduje modely, grafiku, hudbu, zvuky a další assety z originální kopie hry od Blizzardu. Zdrojový kód je na GitHubu, dostupný pod licencí MIT.
Byl představen ICT Supply Chain Security Toolbox, společný nezávazný rámec EU pro posuzování a snižování kybernetických bezpečnostních rizik v ICT dodavatelských řetězcích. Toolbox identifikuje možné rizikové scénáře ovlivňující ICT dodavatelské řetězce a na jejich podkladě nabízí koordinovaná doporučení k hodnocení a mitigaci rizik. Doporučení se dotýkají mj. podpory multi-vendor strategií a snižování závislostí na vysoce
… více »Nizozemský ministr obrany Gijs Tuinman prohlásil, že je možné stíhací letouny F-35 'jailbreaknout stejně jako iPhony', tedy upravit jejich software bez souhlasu USA nebo spolupráce s výrobcem Lockheed Martin. Tento výrok zazněl v rozhovoru na BNR Nieuwsradio, kde Tuinman naznačil, že evropské země by mohly potřebovat větší nezávislost na americké technologii. Jak by bylo jailbreak možné technicky provést pan ministr nijak nespecifikoval, nicméně je známé, že izraelské letectvo ve svých modifikovaných stíhačkách F-35 používá vlastní software.
Nové číslo časopisu Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 162 (pdf).
Sdružení CZ.NIC, správce české národní domény, zveřejnilo Domain Report za rok 2025 s klíčovými daty o vývoji domény .CZ. Na konci roku 2025 bylo v registru české národní domény celkem 1 515 860 s koncovkou .CZ. Průměrně bylo měsíčně zaregistrováno 16 222 domén, přičemž nejvíce registrací proběhlo v lednu (18 722) a nejméně pak v červnu (14 559). Podíl domén zabezpečených pomocí technologie DNSSEC se po několika letech stagnace výrazně
… více »
Neporadí někdo, jak to všechno udělat bez toho nepřesného dělení? Nebo nějakou rychlou třídu "zlomek"
Tak neděl, ale násob - test rovnosti ("rovnici") k_AB == k_CD můžeš vyjádřit jako (y_B - y_A)/(x_B - x_A) == (y_D - y_C)/(x_D - x_C), což je ekvivalentní (y_B - y_A)*(x_D - x_C) == (y_D - y_C)*(x_B - x_A) (což je ekvivalentní nulovému skalárnímu součinu normály prvního vektoru a druhého vektoru, jak jsem poznamenal v odpovědi Platonixovi)
Ovšem, také záleží, co máš na vstupu.
Neni to sice idealni reseni, ale rozhodne nejjednodussi a v realnych aplikacich je to asi uplne jedno.
Jen je potreba zvolit vhodny odstup delty a presnosti reprezentace realneho cisla v zavislosti na poctu operaci, aby chyba nikdy nepresahla velikost delty.
Toto je standardne riesenie ktore sa uci aj na numerickej matematike, proste sa treba zmierit s konecnou presnoustou cisel s poh. rad. ciarkou. Ked to chces presne tak to rataj symbolicky cez zlomky..
Nebylo by jednodušší napočítat směrové vektory obou úseček (to pomocí rozdílu souřadnicí jejich bodů). Potom stačí provést skalární součin těchto vektorů. Je-li roven nule, jsou kolmé, je-li roven 1 jsou rovnoběžné. Je-li něco mezi, tak jsou obecně různoběžné.
je-li roven 1 jsou rovnoběžné.
Co třeba (1,1) a (-1,-1)? Ne, tohle by se testovalo přes normálový vektor - pokud je normálový vektor prvního vektoru kolmý na druhý vektor (tedy skalární součin druhého vektoru a normály prvního je roven nule). Normálový vektor (a,b) = (-b,a)
Ale jinak dobrý - už jsem chtěl v předešlém vlákně odpovědět, jak řešit situaci se zlomky - tohle je o poznání elegantnější.
I když - je to vlastně to samý, co jsem chtěl navrhnout, jenom jinak vyjádřený.
Není třeba testovat přes normálový vektor. Skačí, když malinko opravím ten svůj návrh: bude se počítat absolutní hodnota skalárního součinu. Jo jinak je samozřejmě třeba vektory normovat!
Tedy celý vzoreček by byl asi takovýto:
1. najdu směrové vektory pomocí rozdílu souřadnic obou bodů
2. spočítám výraz: (skalární součin 1 a 2 vektoru)^2/((skalární součin 1 a 1 vektoru)^2*(skalární součin 2 a 2 vektoru)^2)
3. je-li výsledek 1 - rovnoběžné, 0 - kolmé, něco mezi jsou obecně různoběžné svírají úhel = acos(sqrt(výsledek))
No, ale těm operacím bych se radši vyhnul - narůstá časová složitost a dochází k nepřesnostem (normála je levná).
Nevím, co je na normále tak super. Samozřejmě musíš ty vědět, jaké funkce má ten program poskytovat. Já navrhuji řešení, které je robustní (neselže při vyšším počtu rozměrů) a je naprosto standardní (opírá se o definice skalárního součinu a příslušné věty). Alternativně můžeš na 0 testovat skalární součin obou vektorů a zároveň jednoho vektoru a normálového k druhému. Přijde mi to ale zbytečné, když se vše dá ošetřit jedním vzorečkem.
Časová složitost je stejná.
Jo a nedoporučuji normálový vektor používat protože pro více dimenzí je problém s jeho definicí (je nejednoznačný). Např.: Jaký bude normálový vektor k vektoru (1,1,1). Je to totiž celá normálová rovina.
Ty vole! Tyhle problémy bych chtěl mít! 
(By - Ay)(CyDx - CxDy) - (Dy - Cy)(AyBx - AxBy)
y = ---------------------------------------------
(By - Ay)(Dx - Cx) - (Dy - Cy)(Bx - Ax)
Nevim proc presne to neproslo tobe, ale v tom modu -pedantic si to zkus nejdriv zkompilovat na progtestu v sekci prekladace. Muze ti to na tvym systemu hazet jiny warningy nez u nich a uz to neprojde..
Z bodů zjistím k a q pro rovnici přímky y = kx + qTímto tvarem rovnice nejsi schopen popsat přímky rovnoběžné s osou y - ty chyby by mohly být pokusy počítače o dělení různých čísel nulou (ale nejsem programátor, takže netuším, jestli je to správný výklad). Blbuvzdorný tvar rovnice přímky v rovině je:
ax + by +c = 0 , kde "a" a "b" jsou pořadnice normálového vektoru k úsečce a c je konstanta, která se dopočítá dosazením souřadnic bodu ležícího na přímce za "x" a "y".
Ve tří- a vícerozměrném prostoru ti pak nezbyde, než přímky vyjadřovat parametrickými rovnicemi {x}T = {a}T + {b}Tt , kde vektor "x" jsou souřadnice libovolného bodu na přímce, vektor "a" souřadnice známého bodu ležícího na přímce, vektor "b" souřadnice směrového vektoru přímky a "t" je parametr.
0x = 0 (úsečky leží na jedné přímce, je potřeba spočítat překryv) a 0x != 0 (úsečky leží na dvou různých rovnoběžných přímkách).
vektorový součin = 0 -> rovnoběžné/na společné přímce
c1 == c2 -> na společné přímce
A, B na CD nebo C na AB -> překrývají se
jinak ne
jinak rovnoběžné
skalární součin směrových vektorů = 0 -> kolmé
jinak různoběžné
ze soustavy průsečík (jako "zlomek", abych mohl přesně zjišťovat, jestli leží na úsečce)
průsečík na AB a CD -> průsečík úseček
Hlavní je, že to funguje, jenom by to asi příště chtělo pořádnou analýzu, což nemám rád
Hlavní je, že to funguje, jenom by to asi příště chtělo pořádnou analýzu, což nemám rádHm, tak v tomhle se informatika od stavařiny moc neliší. Když se člověk vybodne na pořádnou analýzu, tak potom vycházejí v lepším případě nesmysly a v horším správně se tvářící úplně špatné výsledky...
Tiskni
Sdílej: