Příspěvek na blogu Raspberry Pi představuje novou kompletně přepracovanou verzi 2.0 aplikace Raspberry Pi Imager (YouTube) pro stažení, nakonfigurování a zapsání obrazu operačního systému pro Raspberry Pi na SD kartu. Z novinek lze vypíchnout volitelnou konfiguraci Raspberry Pi Connect.
Memtest86+ (Wikipedie), svobodný nástroj pro kontrolu operační paměti, byl vydán ve verzi 8.00. Přináší podporu nejnovějších procesorů Intel a AMD nebo také tmavý režim.
Programovací jazyk Racket (Wikipedie), tj. jazyk z rodiny jazyků Lisp a potomek jazyka Scheme, byl vydán v nové major verzi 9.0. Hlavní novinku jsou paralelní vlákna (Parallel Threads).
Před šesti týdny bylo oznámeno, že Qualcomm kupuje Arduino. Minulý týden byly na stránkách Arduina aktualizovány podmínky používání a zásady ochrany osobních údajů. Objevily se obavy, že by otevřená povaha Arduina mohla být ohrožena. Arduino ubezpečuje, že se nic nemění a například omezení reverzního inženýrství v podmínkách používání se týká pouze SaaS cloudové aplikace.
Knihovna libpng, tj. oficiální referenční knihovna grafického formátu PNG (Portable Network Graphics), byla vydána ve verzi 1.6.51. Opraveny jsou 4 bezpečnostní chyby obsaženy ve verzích 1.6.0 (vydána 14. února 2013) až 1.6.50. Nejvážnější z chyb CVE-2025-65018 může vést ke spuštění libovolného kódu.
Nové číslo časopisu Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 159 (pdf).
Hru Warhammer: Vermintide 2 (ProtonDB) lze na Steamu získat zdarma napořád, když aktivaci provedete do pondělí 24. listopadu.
Virtualizační software Xen (Wikipedie) byl vydán v nové verzi 4.21. Podrobnosti v poznámkách k vydání a přehledu nových vlastností.
Evropská komise schválila český plán na poskytnutí státní pomoci v objemu 450 milionů eur (téměř 11 miliard Kč) na rozšíření výroby amerického producenta polovodičů onsemi v Rožnově pod Radhoštěm. Komise o tom informovala v dnešní tiskové zprávě. Společnost onsemi by podle ní do nového závodu v Rožnově pod Radhoštěm měla investovat 1,64 miliardy eur (téměř 40 miliard Kč).
Microsoft v příspěvku na svém blogu věnovaném open source oznámil, že textové adventury Zork I, Zork II a Zork III (Wikipedie) jsou oficiálně open source pod licencí MIT.
Jednoduché je to v případech, kdy máme k dispozici souborové deskriptory. Ty použijeme ve volání select(), poll() nebo epoll() a hned se dozvíme, co se stalo. Problém je ovšem v tom, že tyto deskriptory máme jen pro omezený okruh událostí. Pro mnohé události (asynchronní I/O, časovače, skončení podřízeného procesu atd.) musíme spoléhat na signály - a ty s výše uvedeným nejdou příliš dohromady.Ad asynchronní I/O a deskriptory - píšeš, že jediným skutečně bezpečným způsobem zpracování signálů je volání
sigwait(). Co je špatně na způsobu, kdy se při zpracování signálu SIGIO pomocí select() otestují deskriptory a příslušně se zareaguje? (Za předpokladu, že deskriptorů není příliš mnoho)
sigwait() (a samozřejmě také sigwaitinfo() a sigtimedwait()) má tu výhodu, že se zpracuje vždy právě jeden signál (a ostatní zůstávají blokované) a nepoužívá se - není potřeba - asynchronní handler. Při jiném řešení už nastávají komplikace s rozlišováním, které všechny signály vlastně přišly. Tak jako tak tam ale zůstane problém s výkonností, protože select/poll operace je obecně O(n).
int main() {
struct sigaction sigakce;
void io_sigio (int i);
void casovano (int i);
...
sigakce.sa_handler = io_sigio;
sigfillset (&sigakce.sa_mask);
sigakce.sa_flags = 0;
sigaction (SIGIO, &sigakce, NULL);
sigakce.sa_handler = casovano;
sigaction (SIGALRM, &sigakce, NULL);
for (;;) {pause();}
}
Program má jenom reagovat na události - příchod dat ze sítě a periférií a na časovač, takže čeká v nekonečné smyčce.
Jestli jsem to dobře pochopil, tak při použití sigwait() by program v nekonečné smyčce volal tuto funkci a rozhodoval, jaký signál přišel a jak se zachovat.
Při jiném řešení už nastávají komplikace s rozlišováním, které všechny signály vlastně přišly.To znamená, že když nepoužívám sigwait() a přijde víc signálů najednou, že se některé zahodí a nezpracují? Já měl zato, že se nejprve zavolá obsluha jednoho a pak druhého.
Tak jako tak tam ale zůstane problém s výkonností, protože select/poll operace je obecně O(n).Jasně, proto jsem psal, že předpokládám, že deskriptorů je málo (tento případ rozhodně není to, co je popsáno v blogu - tj. server s mnoha síťovými spojeními, otevřenými soubory apod.)
volatile (= rychlost dolů). A tak dále.
Jestli jsem to dobře pochopil, tak při použití sigwait() by program v nekonečné smyčce volal tuto funkci a rozhodoval, jaký signál přišel a jak se zachovat.
sigwait() vrací (resp. zapisuje přes pointer) číslo signálu, který přišel. Funkce sigwaitinfo() a sigtimedwait() dělají totéž, ale navíc ještě poskytují další informace (např. identifikátor časovače, PID ukončeného potomka, PID procesu, který zavolal kill() apod.).
Všechny tyto funkce fungují tak, že se zavolají s blokovanými signály, tyto se uvnitř odblokují, a když přijde první signál (nebo už nějaký čeká), zase se všechny signály zablokují a vyskočí to ven z funkce. To vše atomicky. Pak lze bezpečně a synchronně dělat cokoliv. Takže se to používá tak, že se v nekonečné smyčce volá sigwait() a vždy se podle čísla signálu zjistí, jaká událost nastala.
To znamená, že když nepoužívám sigwait() a přijde víc signálů najednou, že se některé zahodí a nezpracují? Já měl zato, že se nejprve zavolá obsluha jednoho a pak druhého.Signál se "zahodí" jen v jediném případě - že se jedná o obyčejný (klasický POSIXový, ne-realtime) signál a již nějaký čeká na zpracování. Ovšem když přijde více signálů "najednou" (tedy těsně po sobě), začne se zpracovávat jeden, a pokud ty další nejsou blokované, může kdykoliv začít obsluha jiného (s jiným číslem). Takže to doběhne třeba do půlky handleru a v tu chvíli začne obsluha jiného signálu. Blokace v handleru to úplně neřeší, protože se nemusí stihnout (i když toto není většinou tragédie). Horší ale je, že jsou to pro každý handler 2 syscally navíc, což sežere dost času. Tohle je výhoda
sigwait(), že takové problémy se nemusejí vůbec řešit.
Tiskni
Sdílej: