Byli vyhlášeni vítězové ocenění Steam Awards 2025. Hrou roku a současně nejlepší hrou, která vám nejde, je Hollow Knight: Silksong.
Byla vydána nová verze 26.0 linuxové distribuce Manjaro (Wikipedie). Její kódové jméno je Anh-Linh. Ke stažení je v edicích GNOME, KDE PLASMA a XFCE.
Jednotný seznam blokovaných internetových stránek vedený Českým telekomunikační úřadem obsahoval také Český telekomunikační úřad.
Byl představen webový prohlížeč Brow6el, běžící v terminálu. Pro prohlížení webu je využit Chromium Embedded Framework, vyrendrovaná webová stránka je následně zobrazena v terminálu převodem na sixely pomocí knihovny libsixel. Brow6el se ovládá modálním klávesnicovým rozhraním, inspirovaném populárním textovým editorem Vim. Demonstrační video s ukázkou používání.
Společnost Pebble představila (YouTube) chytré hodinky Pebble Round 2. S kulatým e-paper displejem, s open source PebbleOS a vydrží baterie přibližně dva týdny. Předobjednat je lze za 199 dolarů s plánovaným dodáním v květnu.
Na novoroční inauguraci starosty New Yorku Zohrana Mamdaniho bylo zakázáno si s sebou přinést Raspberry Pi anebo Flipper Zero. Raspberry Pi i Flipper Zero jsou explicitně uvedeny v seznamu zakázaných věcí jak na na veřejné pozvánce, tak i na oficiálních stránkách města.
OpenTTD (Wikipedie), tj. open source klon počítačové hry Transport Tycoon Deluxe, byl vydán v nové stabilní verzi 15.0. Přehled novinek v seznamu změn a také na YouTube. OpenTTD lze instalovat také ze Steamu.
Správce oken IceWM byl vydán ve verzi 4.0.0, která např. vylepšuje navigaci v přepínání velkého množství otevřených oken.
Od 1. ledna 2026 jsou všechny publikace ACM (Association for Computing Machinery) a související materiály přístupné v její digitální knihovně. V rámci této změny je nyní digitální knihovna ACM nabízena ve dvou verzích: v základní verzi zdarma, která poskytuje otevřený přístup ke všem publikovaným výzkumům ACM, a v prémiové zpoplatněné verzi, která nabízí další služby a nástroje 'určené pro hlubší analýzu, objevování a organizační využití'.
Jednoduché je to v případech, kdy máme k dispozici souborové deskriptory. Ty použijeme ve volání select(), poll() nebo epoll() a hned se dozvíme, co se stalo. Problém je ovšem v tom, že tyto deskriptory máme jen pro omezený okruh událostí. Pro mnohé události (asynchronní I/O, časovače, skončení podřízeného procesu atd.) musíme spoléhat na signály - a ty s výše uvedeným nejdou příliš dohromady.Ad asynchronní I/O a deskriptory - píšeš, že jediným skutečně bezpečným způsobem zpracování signálů je volání
sigwait(). Co je špatně na způsobu, kdy se při zpracování signálu SIGIO pomocí select() otestují deskriptory a příslušně se zareaguje? (Za předpokladu, že deskriptorů není příliš mnoho)
sigwait() (a samozřejmě také sigwaitinfo() a sigtimedwait()) má tu výhodu, že se zpracuje vždy právě jeden signál (a ostatní zůstávají blokované) a nepoužívá se - není potřeba - asynchronní handler. Při jiném řešení už nastávají komplikace s rozlišováním, které všechny signály vlastně přišly. Tak jako tak tam ale zůstane problém s výkonností, protože select/poll operace je obecně O(n).
int main() {
struct sigaction sigakce;
void io_sigio (int i);
void casovano (int i);
...
sigakce.sa_handler = io_sigio;
sigfillset (&sigakce.sa_mask);
sigakce.sa_flags = 0;
sigaction (SIGIO, &sigakce, NULL);
sigakce.sa_handler = casovano;
sigaction (SIGALRM, &sigakce, NULL);
for (;;) {pause();}
}
Program má jenom reagovat na události - příchod dat ze sítě a periférií a na časovač, takže čeká v nekonečné smyčce.
Jestli jsem to dobře pochopil, tak při použití sigwait() by program v nekonečné smyčce volal tuto funkci a rozhodoval, jaký signál přišel a jak se zachovat.
Při jiném řešení už nastávají komplikace s rozlišováním, které všechny signály vlastně přišly.To znamená, že když nepoužívám sigwait() a přijde víc signálů najednou, že se některé zahodí a nezpracují? Já měl zato, že se nejprve zavolá obsluha jednoho a pak druhého.
Tak jako tak tam ale zůstane problém s výkonností, protože select/poll operace je obecně O(n).Jasně, proto jsem psal, že předpokládám, že deskriptorů je málo (tento případ rozhodně není to, co je popsáno v blogu - tj. server s mnoha síťovými spojeními, otevřenými soubory apod.)
volatile (= rychlost dolů). A tak dále.
Jestli jsem to dobře pochopil, tak při použití sigwait() by program v nekonečné smyčce volal tuto funkci a rozhodoval, jaký signál přišel a jak se zachovat.
sigwait() vrací (resp. zapisuje přes pointer) číslo signálu, který přišel. Funkce sigwaitinfo() a sigtimedwait() dělají totéž, ale navíc ještě poskytují další informace (např. identifikátor časovače, PID ukončeného potomka, PID procesu, který zavolal kill() apod.).
Všechny tyto funkce fungují tak, že se zavolají s blokovanými signály, tyto se uvnitř odblokují, a když přijde první signál (nebo už nějaký čeká), zase se všechny signály zablokují a vyskočí to ven z funkce. To vše atomicky. Pak lze bezpečně a synchronně dělat cokoliv. Takže se to používá tak, že se v nekonečné smyčce volá sigwait() a vždy se podle čísla signálu zjistí, jaká událost nastala.
To znamená, že když nepoužívám sigwait() a přijde víc signálů najednou, že se některé zahodí a nezpracují? Já měl zato, že se nejprve zavolá obsluha jednoho a pak druhého.Signál se "zahodí" jen v jediném případě - že se jedná o obyčejný (klasický POSIXový, ne-realtime) signál a již nějaký čeká na zpracování. Ovšem když přijde více signálů "najednou" (tedy těsně po sobě), začne se zpracovávat jeden, a pokud ty další nejsou blokované, může kdykoliv začít obsluha jiného (s jiným číslem). Takže to doběhne třeba do půlky handleru a v tu chvíli začne obsluha jiného signálu. Blokace v handleru to úplně neřeší, protože se nemusí stihnout (i když toto není většinou tragédie). Horší ale je, že jsou to pro každý handler 2 syscally navíc, což sežere dost času. Tohle je výhoda
sigwait(), že takové problémy se nemusejí vůbec řešit.
Tiskni
Sdílej: