Byl publikován aktuální přehled vývoje renderovacího jádra webového prohlížeče Servo (Wikipedie).
V programovacím jazyce Go naprogramovaná webová aplikace pro spolupráci na zdrojových kódech pomocí gitu Forgejo byla vydána ve verzi 12.0 (Mastodon). Forgejo je fork Gitei.
Nová čísla časopisů od nakladatelství Raspberry Pi zdarma ke čtení: Raspberry Pi Official Magazine 155 (pdf) a Hello World 27 (pdf).
Hyprland, tj. kompozitor pro Wayland zaměřený na dláždění okny a zároveň grafické efekty, byl vydán ve verzi 0.50.0. Podrobný přehled novinek na GitHubu.
Patrick Volkerding oznámil před dvaatřiceti lety vydání Slackware Linuxu 1.00. Slackware Linux byl tenkrát k dispozici na 3,5 palcových disketách. Základní systém byl na 13 disketách. Kdo chtěl grafiku, potřeboval dalších 11 disket. Slackware Linux 1.00 byl postaven na Linuxu .99pl11 Alpha, libc 4.4.1, g++ 2.4.5 a XFree86 1.3.
Ministerstvo pro místní rozvoj (MMR) jako první orgán státní správy v Česku spustilo takzvaný „bug bounty“ program pro odhalování bezpečnostních rizik a zranitelných míst ve svých informačních systémech. Za nalezení kritické zranitelnosti nabízí veřejnosti odměnu 1000 eur, v případě vysoké závažnosti je to 500 eur. Program se inspiruje přístupy běžnými v komerčním sektoru nebo ve veřejné sféře v zahraničí.
Vláda dne 16. července 2025 schválila návrh nového jednotného vizuálního stylu státní správy. Vytvořilo jej na základě veřejné soutěže studio Najbrt. Náklady na přípravu návrhu a metodiky činily tři miliony korun. Modernizovaný dvouocasý lev vychází z malého státního znaku. Vizuální styl doprovází originální písmo Czechia Sans.
Vyhledávač DuckDuckGo je podle webu DownDetector od 2:15 SELČ nedostupný. Opět fungovat začal na několik minut zhruba v 15:15. Další služby nesouvisející přímo s vyhledáváním, jako mapy a AI asistent jsou dostupné. Pro některé dotazy během výpadku stále funguje zobrazování například textu z Wikipedie.
Více než 600 aplikací postavených na PHP frameworku Laravel je zranitelných vůči vzdálenému spuštění libovolného kódu. Útočníci mohou zneužít veřejně uniklé konfigurační klíče APP_KEY (např. z GitHubu). Z více než 260 000 APP_KEY získaných z GitHubu bylo ověřeno, že přes 600 aplikací je zranitelných. Zhruba 63 % úniků pochází z .env souborů, které často obsahují i další citlivé údaje (např. přístupové údaje k databázím nebo cloudovým službám).
Open source modální textový editor Helix, inspirovaný editory Vim, Neovim či Kakoune, byl vydán ve verzi 25.07. Přehled novinek se záznamy terminálových sezení v asciinema v oznámení na webu. Detailně v CHANGELOGu na GitHubu.
Občas není od věci vyslovit něco, za co se upaluje nebo ukamenovává. Nic není totiž tak jednoduché, aby byla pravda vždy jediná a na první pohled zřejmá.
Jednou z hlavních (a opravdu pořádně velkých) bolestí je neexistence jednotného rozhraní pro příjem událostí a jejich snadné a bezpečné zpracování. S tím, jak se technologie kevent
blíží k rozumně použitelné implementaci, samozřejmě roste naděje na změnu. Současně ovšem vyvstávají i otázky.
Zpracovávat v Linuxu rozumně události? Dosud nemožné. Máme například program (řekněme server), který má otevřeno x síťových spojení, současně potřebuje hlídat timeouty, sledovat změny určitých souborů a dělat případně některé další věci. Takový server se implementuje dost špatně - buď ho musíme rozštěpit na řadu procesů či vláken (a babrat se s komunikací a synchronizací mezi nimi), nebo používat všelijaká krkolomná řešení, navíc nepříliš efektivní.
To v takových Windows je na tom člověk o poznání lépe. Může nechat čekat program v jediném volání WaitForMultipleObjects()
, a když to vyskočí ven, obsloužit událost, ke které došlo. Lhostejno, o jaký druh události se jednalo. Podobně jednoduchou práci mají i vývojáři na *BSD nebo na Mac OS X. Jen Linux zatím pokulhává.
Jednoduché je to v případech, kdy máme k dispozici souborové deskriptory. Ty použijeme ve volání select()
, poll()
nebo epoll()
a hned se dozvíme, co se stalo. Problém je ovšem v tom, že tyto deskriptory máme jen pro omezený okruh událostí. Pro mnohé události (asynchronní I/O, časovače, skončení podřízeného procesu atd.) musíme spoléhat na signály - a ty s výše uvedeným nejdou příliš dohromady. Jediným skutečně bezpečným způsobem zpracování signálů je volání sigwait()
, které pak musíme použít místo zmíněných funkcí. Tím se ovšem nevyřeší problém se "spojováním" nezpracovaných klasických signálů.
Je jasné, že cesta ven vede jen přes zavedení skutečně univerzálního rozhraní pro události. Bylo by principiálně možné říct si "všechno bude deskriptor", ale pak vyvstane problém škálovatelnosti. Při velkém množství deskriptorů by to bylo pomalé. Než vymýšlet složitá řešení ve stylu inotify
(na jednom souborovém deskriptoru může být větší počet "hooků" identifikovaných vlastními deskriptory), je lépe to udělat opravdu pořádně a dát do nového rozhraní opravdu všechno, co by mohl někdo potřebovat.
A tím se dostávám k jádru pudla. Dosavadní plány kevent
u totiž počítají s tím, že se budou sledovat skoro všechny zajímavé události (AIO, časovače, signály, klasické deskriptorové události), ale bohužel ne úplně všechny. Protože si myslím, že by bylo správné využít této chvíle a dotáhnout to do opravdu kvalitní podoby, rád bych viděl v kevent
u i další události. Jmenovitě:
Možná teď někdo bude mít pocit, že jsem se praštil o futro a chci z Linuxu udělat Windows. Třeba to tak je, ale každopádně by přidání monitoringu těchto událostí bylo velice přínosné. Mám v plánu poslat to jako námět do LKML, ale nejdřív to tu chci předhodit k veřejné kritice. Byl bych rád, kdyby ten, kdo má proti takovém nápadu nějaké výhrady, je tu předložil - aby se zamezilo případnému zaplevelování LKML (a zbytečné zátěži vývojářů jádra) nesmyslnými nápady.
Tiskni
Sdílej:
Jednoduché je to v případech, kdy máme k dispozici souborové deskriptory. Ty použijeme ve volání select(), poll() nebo epoll() a hned se dozvíme, co se stalo. Problém je ovšem v tom, že tyto deskriptory máme jen pro omezený okruh událostí. Pro mnohé události (asynchronní I/O, časovače, skončení podřízeného procesu atd.) musíme spoléhat na signály - a ty s výše uvedeným nejdou příliš dohromady.Ad asynchronní I/O a deskriptory - píšeš, že jediným skutečně bezpečným způsobem zpracování signálů je volání
sigwait()
. Co je špatně na způsobu, kdy se při zpracování signálu SIGIO pomocí select()
otestují deskriptory a příslušně se zareaguje? (Za předpokladu, že deskriptorů není příliš mnoho)
sigwait()
(a samozřejmě také sigwaitinfo()
a sigtimedwait()
) má tu výhodu, že se zpracuje vždy právě jeden signál (a ostatní zůstávají blokované) a nepoužívá se - není potřeba - asynchronní handler. Při jiném řešení už nastávají komplikace s rozlišováním, které všechny signály vlastně přišly. Tak jako tak tam ale zůstane problém s výkonností, protože select/poll operace je obecně O(n).
int main() { struct sigaction sigakce; void io_sigio (int i); void casovano (int i); ... sigakce.sa_handler = io_sigio; sigfillset (&sigakce.sa_mask); sigakce.sa_flags = 0; sigaction (SIGIO, &sigakce, NULL); sigakce.sa_handler = casovano; sigaction (SIGALRM, &sigakce, NULL); for (;;) {pause();} }Program má jenom reagovat na události - příchod dat ze sítě a periférií a na časovač, takže čeká v nekonečné smyčce. Jestli jsem to dobře pochopil, tak při použití
sigwait()
by program v nekonečné smyčce volal tuto funkci a rozhodoval, jaký signál přišel a jak se zachovat.
Při jiném řešení už nastávají komplikace s rozlišováním, které všechny signály vlastně přišly.To znamená, že když nepoužívám sigwait() a přijde víc signálů najednou, že se některé zahodí a nezpracují? Já měl zato, že se nejprve zavolá obsluha jednoho a pak druhého.
Tak jako tak tam ale zůstane problém s výkonností, protože select/poll operace je obecně O(n).Jasně, proto jsem psal, že předpokládám, že deskriptorů je málo (tento případ rozhodně není to, co je popsáno v blogu - tj. server s mnoha síťovými spojeními, otevřenými soubory apod.)
volatile
(= rychlost dolů). A tak dále.
Jestli jsem to dobře pochopil, tak při použití sigwait() by program v nekonečné smyčce volal tuto funkci a rozhodoval, jaký signál přišel a jak se zachovat.
sigwait()
vrací (resp. zapisuje přes pointer) číslo signálu, který přišel. Funkce sigwaitinfo()
a sigtimedwait()
dělají totéž, ale navíc ještě poskytují další informace (např. identifikátor časovače, PID ukončeného potomka, PID procesu, který zavolal kill()
apod.).
Všechny tyto funkce fungují tak, že se zavolají s blokovanými signály, tyto se uvnitř odblokují, a když přijde první signál (nebo už nějaký čeká), zase se všechny signály zablokují a vyskočí to ven z funkce. To vše atomicky. Pak lze bezpečně a synchronně dělat cokoliv. Takže se to používá tak, že se v nekonečné smyčce volá sigwait()
a vždy se podle čísla signálu zjistí, jaká událost nastala.
To znamená, že když nepoužívám sigwait() a přijde víc signálů najednou, že se některé zahodí a nezpracují? Já měl zato, že se nejprve zavolá obsluha jednoho a pak druhého.Signál se "zahodí" jen v jediném případě - že se jedná o obyčejný (klasický POSIXový, ne-realtime) signál a již nějaký čeká na zpracování. Ovšem když přijde více signálů "najednou" (tedy těsně po sobě), začne se zpracovávat jeden, a pokud ty další nejsou blokované, může kdykoliv začít obsluha jiného (s jiným číslem). Takže to doběhne třeba do půlky handleru a v tu chvíli začne obsluha jiného signálu. Blokace v handleru to úplně neřeší, protože se nemusí stihnout (i když toto není většinou tragédie). Horší ale je, že jsou to pro každý handler 2 syscally navíc, což sežere dost času. Tohle je výhoda
sigwait()
, že takové problémy se nemusejí vůbec řešit.