abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
    dnes 03:33 | Zajímavý software

    AI Claude Code od Anthropicu lépe rozumí frameworku Nette, tj. open source frameworku pro tvorbu webových aplikací v PHP. David Grudl napsal plugin Nette pro Claude Code.

    Ladislav Hagara | Komentářů: 0
    dnes 00:11 | Nová verze

    Byla vydána prosincová aktualizace aneb nová verze 1.108 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.108 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.

    Ladislav Hagara | Komentářů: 0
    včera 20:44 | IT novinky

    Na lasvegaském veletrhu elektroniky CES byl předveden prototyp notebooku chlazeného pomocí plazmových aktuátorů (DBD). Ačkoliv se nejedná o první nápad svého druhu, nepochybně to je první ukázka praktického použití tohoto způsobu chlazení v běžné elektronice. Co činí plazmové chladící akční členy technologickou výzvou je především vysoká produkce jedovatého ozonu, tu se prý podařilo firmě YPlasma zredukovat dielektrickou

    … více »
    NUKE GAZA! 🎆 | Komentářů: 2
    včera 16:33 | Zajímavý projekt

    Patchouli je open source implementace EMR grafického tabletu (polohovací zařízení). Projekt je hostován na GitLabu.

    Ladislav Hagara | Komentářů: 0
    včera 14:11 | IT novinky

    Český Nejvyšší soud potvrdil, že česká právní úprava plošného uchování dat o elektronické komunikaci porušuje právo Evropské unie. Pravomocným rozsudkem zamítl dovolání ministerstva průmyslu a obchodu. To se teď musí omluvit novináři Českého rozhlasu Janu Cibulkovi za zásah do práv na ochranu soukromí a osobních údajů. Ve sporu jde o povinnost provozovatelů sítí uchovávat údaje, ze kterých lze odvodit, kdo, s kým a odkud komunikoval.

    Ladislav Hagara | Komentářů: 6
    včera 02:11 | Komunita

    Google bude vydávat zdrojové kódy Androidu pouze dvakrát ročně. Ve 2. a 4. čtvrtletí.

    Ladislav Hagara | Komentářů: 0
    7.1. 17:22 | Zajímavý článek

    Bezpečnostní specialista Graham Helton z Low Orbit Security si všímá podezřelých anomálií v BGP, zaznamenaných krátce před vstupem ozbrojených sil USA na území Venezuely, které tam během bleskové speciální vojenské operace úspěšně zatkly venezuelského diktátora Madura za narkoterorismus. BGP (Border Gateway Protocol) je 'dynamický směrovací protokol, který umožňuje routerům automaticky reagovat na změny topologie počítačové sítě' a je v bezpečnostních kruzích znám jako 'notoricky nezabezpečený'.

    NUKE GAZA! 🎆 | Komentářů: 9
    7.1. 06:11 | Nová verze

    Společnost Valve aktualizovala přehled o hardwarovém a softwarovém vybavení uživatelů služby Steam. Podíl uživatelů Linuxu dosáhl 3,58 %. Nejčastěji používané linuxové distribuce jsou Arch Linux, Linux Mint a Ubuntu. Při výběru jenom Linuxu vede SteamOS Holo s 26,32 %. Procesor AMD používá 67,43 % hráčů na Linuxu.

    Ladislav Hagara | Komentářů: 4
    7.1. 05:55 | IT novinky

    V Las Vegas probíhá veletrh CES (Consumer Electronics Show, Wikipedie). Firmy představují své novinky. Například LEGO představilo systém LEGO SMART Play: chytré kostky SMART Brick, dlaždičky SMART Tagy a SMART minifigurky. Kostka SMART Brick dokáže rozpoznat přítomnost SMART Tagů a SMART minifigurek, které se nacházejí v její blízkosti. Ty kostku SMART Brick aktivují a určí, co má dělat.

    Ladislav Hagara | Komentářů: 0
    6.1. 18:33 | Bezpečnostní upozornění

    Vládní CERT (GovCERT.CZ) upozorňuje (𝕏) na kritickou zranitelnost v jsPDF, CVE-2025-68428. Tato zranitelnost umožňuje neautentizovaným vzdáleným útočníkům číst libovolné soubory z lokálního souborového systému serveru při použití jsPDF v prostředí Node.js. Problém vzniká kvůli nedostatečné validaci vstupu u cest k souborům předávaných několika metodám jsPDF. Útočník může zneužít tuto chybu k exfiltraci citlivých

    … více »
    Ladislav Hagara | Komentářů: 6
    Které desktopové prostředí na Linuxu používáte?
     (1%)
     (4%)
     (0%)
     (10%)
     (21%)
     (4%)
     (5%)
     (3%)
     (11%)
     (54%)
    Celkem 298 hlasů
     Komentářů: 7, poslední včera 15:35
    Rozcestník
    Štítky: není přiřazen žádný štítek


    Vložit další komentář
    21.2.2012 07:07 rastos | skóre: 63 | blog: rastos
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    To čo by bolo veľmi zaujímavé, je informácia o tom, ako vytiahnuť modul z mojich kľúčov - teda z PGP/GPG kľúčov a SSL certifikátov - a malý program, ktorý by povedal z koľkými kľúčmi z publikovanej DB kľúčov zdieľam RSA modul.

    Ale inak vďaka za ten blogpost.
    limit_false avatar 21.2.2012 13:01 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Lze udělat blacklist klíčů podobně jako u těch slabých debianích klíčů. Problém je v tom, že takto nelze otestovat všechny klíče. Možnosti jsou pak dvě:
    1. veřejná služba, kde uživatel pošle veřejný RSA klíč, který musí být podepsán privátním (aby to nešlo jednoduše použít jako orákulum)
    2. homomorfní šifrování, což je pěkný koncept, ale velmi nepraktický z hlediska nároků na místo a výkon
    Extrakce modulu: viz "openssl rsa" a "openssl pkcs8" příkazy.
    When people want prime order group, give them prime order group.
    Josef Kufner avatar 24.2.2012 09:04 Josef Kufner | skóre: 70
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Podepisovat veřejný klíč privátním ze stejného páru není moc dobrý nápad.
    Hello world ! Segmentation fault (core dumped)
    24.2.2012 09:43 Filip Jirsák | skóre: 67 | blog: Fa & Bi
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Proč ne? Dělá se to třeba v každé žádosti o certifikát.
    limit_false avatar 25.2.2012 07:14 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Tam zavisi od milionu veci. Treba nutnost paddingu a hashovat jako prvni pozadavek. Jinak i tak kvuli blbe implementaci pri malem verejnem exponentu (napr. 3) lze z 3 podpisu ziskat klic. Tusim se to vola message extension attack (nekde mam i paper). Zduraznuji, ze je to chyba implementace, ne algoritmu (mam v planu to v par softech hledat, protoze tohle chyba kterou je velmi lehke udelat).

    Zbytek je jenom delsi "rant" okolo soucasne situace:

    Jako vubec kazdy crypto protokol musi prohlednout mnoho lidi, i kdyby ho navrhoval sam Schneier. Viz fiasko s WEP. Kdyby prasklo nejake jine RFC jehoz jsem autorem kvuli podobne blbosti, zacnu hackovat IETF servery a mazat sve jmeno z daneho RFC ;-)

    Ted se vlastne z ruznych diskusi dozvidam, ze "best practices", co nedavno platili, uz neplati. Na nekterych vecech se ani veterani kryptografie nedokazou dohodnout. Budu o tom psat clanek pro root.cz, mozna tak do mesice by se mohl objevit.

    "Crypto-shitstorm" strhnuvsi se v ruznych listech je dusledek tech generatoru. Nekdy mi z toho jde hlava kolem a nekdy jsem zas rad ze vim treba vic nez 1/3 lidi v ruznych otazkach (v porovani jaka lama jsem byl pred 10 lety). Jinak kolem generatoru budeme toho videt vice. Uz jsem videl implementace /dev/random, ktere jsou deterministicke by design. Horsi je, ze kdyz se programatora zeptam, kde je tam v tech 5 radcich chyba, maloktery programator se chyta.

    Holt crypto je tezke a implementace crypta jeste tezsi. Je tam asi 10 "obecnich vet" a pocet specialnich pripadu lze mozna shora omezit Grahamovym cislem.

    Taky by me zajimalo, jestli se nekdo nekdy dopatra pravdy o tomhle generatoru: Dual EC DRBG. Je dokazano, ze existuje sada bodu na te elipticke krivce a kdo je zna, muze vypocitat stav generatoru (plus "podivny bug" se statistickou distribuci bitu). Bohuzel nalezeni ekvivalentni (EC)DLP, takze mozna se nikdy nedovime. Ten generator se pouziva ve Windows (vyborna analyza RNG/PRNG). Po blamazi s NSAKEY to muze znamenat cokoli.

    Chtel jsem tim rict, ze velmi pravdepodobne existuji utocnici typu NSA znajici backdoory v random generatorech a buhvicem a schopni primo napadnout, tresnu, 10-20% kompu otevrenych do netu primo s relativne nizkymi naklady (a zbytek pak odtud). Se znalosti vnitrnosti generatoru jako ten s tim entropy bugem se na dejme tomu 3-5% dostane bezny "crypto-smrtelnik". (Abychom nevypadal jako paranoik sam, zminil to i jeden z tech veteranu a ti si skutecne davaji pozor aby nezneli paranoidne, i kdyz z definice prace paranoidni byt musi :-)).

    Jsem jenom zvedav, co se stane az nadpolovicni cast kryptologu nastvou s neustalym pretlacenim zrud jako COICA/SOPA/PIPA/ACTA/PCIP, protoze uz ted jsou kvuli tomu dost nastvani. "Taky mensi Armageddon" neni vyloucen: "Cracking SCADA...done. Corollary: life deleted." :-)
    When people want prime order group, give them prime order group.
    25.2.2012 08:15 rastos | skóre: 63 | blog: rastos
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Mhm. Ty tuším budeš zaujímavý človek. Budem si ťa musieť viacej všímať ;-) Prezradíš mi, čo máš vyštudované?
    limit_false avatar 26.2.2012 20:08 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    MFF UK. Ale u crypto platí, že co bylo před rokem "best practice", už může být považováno za nedoporučené, nebo dokonce nebezpečné. Tudíž je nutné neustále sledovat nové publikace.
    When people want prime order group, give them prime order group.
    21.2.2012 08:05 polymorf | skóre: 14 | blog: tar_zxpf
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Ok, takze zistite ze Jozef Novak z Podebrad a Parn Gupta z Kathmandu na routeri zdielaju rovnaky privatny kluc. Co s tym?
    21.2.2012 08:18 rastos | skóre: 63 | blog: rastos
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Keďže Jozef Novák z Poděbrad je podozrivý z podporovania terorizmu sťahovaním nelegálnych empétrojek, je nutné navštíviť Parna Guptu z Kathmandu, a získať jeho kľúč výmenou za tabuľku čokolády, čím sa umožní úplná kontrola nad sieťovou prevádzkou Jozefa Nováka z Poděbrad.

    Nie. Robím si srandu. V skutočnosti je to tak, že okrem toho, že sa dozvieš, že zdieľajú rovnaký kľúč, tak sa aj dozvieš aj aký ten privátny kľúč je. A do Kathmandu nemusíš. Skrátka je to spôsob "faktorizácie", ktorá sa nerobí hrubou silou, ale hľadaním, či obeť náhodou používa kľúč, z nejakej malej množiny.
    21.2.2012 10:40 Ivan
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Jozef Novak poziva pro svuj priv klic N1 dve prvocisla. N1 := ( p * q ). Gupta pouziva privatni klic N2 := ( p * r ). Tzn. shodou okolnosti si oba hodili nahodnym generatorem a padlo jim stejne "nahodne" prvocislo "p". Takze pouzijes eukliduv algoritmus a zjistis nejvetsiho spolecneho delitele(N1, N2) a tim je prave "p". Tim se ti podarilo faktorizovat oba privatni klice.
    21.2.2012 09:33 Marcel Šebek | skóre: 21 | blog: c
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Ten algebraický trik se mi moc nezdá, nebude tam náhodou GCD ukrytý v tom modulárním násobení?
    Real programmers don't comment their code. If it was hard to write, it should be hard to read.
    limit_false avatar 22.2.2012 22:08 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Ten algoritmus od DJB je skutečně šílený. Pro ilustraci zmíním, že byl navrhnut v 1995, správnost a složitost algoritmu byla dokázána až v 2004. BTW není "úplně lineární", ale "téměř lineární", složitost O(n1+o(1)) vzhledem k počtu n bitů všech modulů). Některé části je jednodušší "vydrtit" nežli je kódit.
    When people want prime order group, give them prime order group.
    23.2.2012 17:01 JS
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    A je nekde nejaky popis?
    limit_false avatar 25.2.2012 07:17 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    http://cr.yp.to/lineartime/dcba-20040404.pdf

    Doporucuji moc nejist pred prvnim ctenim, zveda se z toho algoritmu dost zaludek ;-)
    When people want prime order group, give them prime order group.
    Bystroushaak avatar 21.2.2012 17:04 Bystroushaak | skóre: 36 | blog: Bystroushaakův blog | Praha
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    >o< - ASCII bonbon za kvalitní blogpost :)
    22.2.2012 18:46 Řepa
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Škoda té angločeštiny, kazí to estetický požitek z čtení.

    Ale jinak zajímavé téma.
    limit_false avatar 22.2.2012 22:18 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Are you fucking kidding me?

    Bavíme se zde o mozko-ničící složitosti a algebře, to už můžete jít rovnout vyfuckovat Bernsteina za jeho Noetherian coids a jiné "jazykové" úchylnosti (které jsou úchylné i v angličtině).

    A není to "angločeština", je to spíš "latin-*".
    When people want prime order group, give them prime order group.
    24.2.2012 09:26 Řepa
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Hádat se nechci. Jen jsem uvedl svůj názor čtenáře.

    Jinak NSD se snad povinně učí na středních školách a většina ostatních věcí stejně byla uvedena jen jako fakt („že lineární algoritmus existuje atp.“), takže čtenář ani nemá co se snažit pochopit.
    limit_false avatar 25.2.2012 07:39 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    OK sorry za prehnanou reakci. Je to tim, ze v posledne dobe je pod kazdym clankem nejaky grammar nazi. Pod temer kazdym clankem i na lupa.cz, root.cz, mne se objevuji... Kdyz uz neco podobneho ("prilis mnoho anglickych terminu") vytykali veteranovi jako Jiri Peterka, tak jsem cumel a zacal penit.

    Ja tak proste mluvim a fakt me nikdo nedonuti psat jinak (nakonec, je to blog). Proste vybiram efektivnejsi slova (Thaicinu a Nepalstinu treba moc casto nevyuziju, ale EN/DE/LAT/GR pravidelne).
    Jinak NSD se snad povinně učí na středních školách a většina ostatních věcí stejně byla uvedena jen jako fakt („že lineární algoritmus existuje atp.“), takže čtenář ani nemá co se snažit pochopit.
    Ano, kdyz to dostanou takto naservirovano (vsechno jiz pochopeno je jednoduche). NSD se sice uci, ale zvlastni je, ze kazdemu z cca 10-15 lidi jsem to musel vysvetlovat osobne jak to funguje, i kdyz je to trivialni (proste si nedocvakly ty dva-tri fakty). Proto jsem psal ten clanek.

    Tvrzeni "ctenar ani nema co pochopit" je asi jako dostat reseni na instanci NP-uplneho problemu a reknout "vzdyt to je jednoduche" kvuli tomu ze reseni je zverejneno a nerict nic o narocnosti nalezani reseni.

    BTW zpusobu pro GCD je spousta. Tim Euklidovym byste daleko nedosel. Samotny Bernstein je v zasade "mega-GCD-na-steroidech". Ale to nema cenu vysvetlovat, viz paper: http://cr.yp.to/lineartime/dcba-20040404.pdf Preji vesele a stastne grcani pri cteni.

    Taky nebudu vykladat jake triky jsem skutecne pouzil, nebo nedejboze davat sem kod pro script kiddies (napr. kazdemu algebraikovi musi prijit ta dlouha GCD rovnice podivna, jsou tam zbytecne veci navic). Tudiz evidentne algebraik nejste.

    Stejne ste IMHO jenom stoural. Hadat se nechci, jenom jsem uvedl nazor autora (vidite ted, jaka je to dementni argumentace?) Omluva prijde az od vas uvidim implementaci toho Bernsteinova algoritmu. Pak taky muzete napsat stokrat lepsi clanek o te implementaci.

    There's no royal road to crypto.
    When people want prime order group, give them prime order group.
    27.2.2012 13:42 jas | skóre: 13 | blog: blag
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo

    Nechce sa vam vyskusat O(n*log n) algoritmus zalozeny na tom, ze gcd(a,b,c,d) = gcd(gcd(a,b), gcd(c,d)) ? S ohladom na jednoduchost by v realite mohol dosahovat celkom dobre vysledky. Obvzlast ak sa berie do uvahy postupne zjednodusovanie vypoctu gcd vo vrstvach log n.

    Implementacia v pythone asi nejak takto (pripadne pridat nejake optimalizacie ako lepsiu kniznicu pre gcd (ak je) a pod.):

    from fractions import gcd
    
    def wgcd(d, u):
      if u - d == 1:
        return a[d]
      elif u - d == 2:
        return gcd(a[d], a[d+1])
      else:
        return gcd(wgcd(d, d + (u - d)/2), wgcd(d + (u - d)/2, u))
    
    a = [17*(x*2) for x in range(150000)]
    print(wgcd(0, len(a)))
    

    27.2.2012 17:40 jas | skóre: 13 | blog: blag
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo

    Hm, ked tak rozmyslam, tak ta zlozitost sa pravdepodobne zmesti aj do O(n).

    limit_false avatar 28.2.2012 22:51 limit_false | skóre: 23 | blog: limit_false
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo
    Ta rovnice gcd(a,b,c,d) = gcd(gcd(a,b), gcd(c,d)) je sice pravdivá, ale řeší jiný problém. My potřebujeme gcd(a, b*c*d), gcd(b, a*c*d), gcd(c, a*b*d)...:

    pro každé i=1..n: gcd(Ni, N1 * N2 * ... * Ni-1 * Ni+1 * ... * Nn).

    Lze to podobním stromem urychlit taky, ale je to jenom jedna z částí (pořád je to daleko od "téměř-linearity").
    When people want prime order group, give them prime order group.
    28.2.2012 23:44 jas | skóre: 13 | blog: blag
    Rozbalit Rozbalit vše Re: Algoritmy pro faktorizaci RSA modulů sdílejících prvočíslo

    Konecne ta gcd rovnica z blogu zacina davat zmysel. Akosi som za gcd(N1,N2…Nm) povazoval gcd(N1,N2,N3 .. Nm) a nie gcd N1 s produktom N2 .. Nm. Vdaka za objasnenie.

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.