Oficiálně byl vydán Android 16. Detaily na blogu a stránkách věnovaných vývojářům.
Byla vydána nová verze 14.3 svobodného unixového operačního systému FreeBSD. Podrobný přehled novinek v poznámkách k vydání.
CSIRT.CZ upozorňuje, že na základě rozhodnutí federálního soudu ve Spojených státech budou veškeré konverzace uživatelů s ChatGPT uchovávány. Včetně těch smazaných.
Ač semestr ve škole právě končí, bastlíři ze studentského klubu Silicon Hill neodpočívají a opět se jako každý měsíc hlásí s pravidelným bastlířským setkáním Virtuální Bastlírna, kde si můžete s ostatními techniky popovídat jako u piva o novinkách, o elektronice, softwaru, vědě, technice obecně, ale také o bizarních tématech, která se za poslední měsíc na internetu vyskytla.
Z novinek za zmínku stojí Maker Faire, kde Pájeníčko předvedlo … více »Na WWDC25 byl představen balíček Containerization a nástroj container pro spouštění linuxových kontejnerů na macOS. Jedná se o open source software pod licencí Apache 2.0 napsaný v programovacím jazyce Swift.
Do 16. června do 19:00 běží na Steamu přehlídka nadcházejících her Festival Steam Next | červen 2025 doplněná demoverzemi, přenosy a dalšími aktivitami. Demoverze lze hrát zdarma.
Apple na své vývojářské konferenci WWDC25 (Worldwide Developers Conference, keynote) představil řadu novinek: designový materiál Liquid Glass, iOS 26, iPadOS 26, macOS Tahoe 26, watchOS 26, visionOS 26, tvOS 26, nové funkce Apple Intelligence, …
Organizátoři konference LinuxDays 2025, jež proběhne o víkendu 4. a 5. října 2025 v Praze na FIT ČVUT, spustili přihlašování přednášek (do 31. srpna) a sběr námětů na zlepšení.
Po roce byla vydána nová stabilní verze 25.6.0 svobodného multiplatformního multimediálního přehrávače SMPlayer (Wikipedie).
DNS4EU, tj. evropská infrastruktura služeb DNS založená na vysoce federovaném a distribuovaném ochranném ekosystému, byla spuštěna v testovacím režimu [𝕏]. Na výběr je 5 možností filtrování DNS.
Jinak NSD se snad povinně učí na středních školách a většina ostatních věcí stejně byla uvedena jen jako fakt („že lineární algoritmus existuje atp.“), takže čtenář ani nemá co se snažit pochopit.Ano, kdyz to dostanou takto naservirovano (vsechno jiz pochopeno je jednoduche). NSD se sice uci, ale zvlastni je, ze kazdemu z cca 10-15 lidi jsem to musel vysvetlovat osobne jak to funguje, i kdyz je to trivialni (proste si nedocvakly ty dva-tri fakty). Proto jsem psal ten clanek. Tvrzeni "ctenar ani nema co pochopit" je asi jako dostat reseni na instanci NP-uplneho problemu a reknout "vzdyt to je jednoduche" kvuli tomu ze reseni je zverejneno a nerict nic o narocnosti nalezani reseni. BTW zpusobu pro GCD je spousta. Tim Euklidovym byste daleko nedosel. Samotny Bernstein je v zasade "mega-GCD-na-steroidech". Ale to nema cenu vysvetlovat, viz paper: http://cr.yp.to/lineartime/dcba-20040404.pdf Preji vesele a stastne grcani pri cteni. Taky nebudu vykladat jake triky jsem skutecne pouzil, nebo nedejboze davat sem kod pro script kiddies (napr. kazdemu algebraikovi musi prijit ta dlouha GCD rovnice podivna, jsou tam zbytecne veci navic). Tudiz evidentne algebraik nejste. Stejne ste IMHO jenom stoural. Hadat se nechci, jenom jsem uvedl nazor autora (vidite ted, jaka je to dementni argumentace?) Omluva prijde az od vas uvidim implementaci toho Bernsteinova algoritmu. Pak taky muzete napsat stokrat lepsi clanek o te implementaci. There's no royal road to crypto.
Nechce sa vam vyskusat O(n*log n) algoritmus zalozeny na tom, ze gcd(a,b,c,d) = gcd(gcd(a,b), gcd(c,d)) ? S ohladom na jednoduchost by v realite mohol dosahovat celkom dobre vysledky. Obvzlast ak sa berie do uvahy postupne zjednodusovanie vypoctu gcd vo vrstvach log n.
Implementacia v pythone asi nejak takto (pripadne pridat nejake optimalizacie ako lepsiu kniznicu pre gcd (ak je) a pod.):
from fractions import gcd def wgcd(d, u): if u - d == 1: return a[d] elif u - d == 2: return gcd(a[d], a[d+1]) else: return gcd(wgcd(d, d + (u - d)/2), wgcd(d + (u - d)/2, u)) a = [17*(x*2) for x in range(150000)] print(wgcd(0, len(a)))
Hm, ked tak rozmyslam, tak ta zlozitost sa pravdepodobne zmesti aj do O(n).
Konecne ta gcd rovnica z blogu zacina davat zmysel. Akosi som za gcd(N1,N2…Nm) povazoval gcd(N1,N2,N3 .. Nm) a nie gcd N1 s produktom N2 .. Nm. Vdaka za objasnenie.
Tiskni
Sdílej: