Dnes a zítra probíhá vývojářská konference Google I/O 2025. Sledovat lze na YouTube a na síti 𝕏 (#GoogleIO).
V Bostonu probíhá konference Red Hat Summit 2025. Vybrané přednášky lze sledovat na YouTube. Dění lze sledovat na síti 𝕏 (#RHSummit).
Společnost Red Hat oficiálně oznámila vydání Red Hat Enterprise Linuxu 10. Vedle nových vlastností přináší také aktualizaci ovladačů a předběžné ukázky budoucích technologií. Podrobnosti v poznámkách k vydání.
Tuto sobotu 24. května se koná historicky první komunitní den projektu Home Assistant. Zváni jsou všichni příznivci, nadšenci a uživatelé tohoto projektu. Pro účast je potřebná registrace. Odkazy na akce v Praze a v Bratislavě.
Troy Hunt představil Have I Been Pwned 2.0, tj. nový vylepšený web služby, kde si uživatelé mohou zkontrolovat, zda se jejich hesla a osobní údaje neobjevily v únicích dat a případně se nechat na další úniky upozorňovat.
Microsoft představil open source textový editor Edit bežící v terminálu. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT.
V Seattlu a také online probíhá konference Microsoft Build 2025. Microsoft představuje své novinky. Windows Subsystem for Linux je nově open source. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT.
Z příspěvku Turris Sentinel – co přinesl rok 2024 na blogu CZ.NIC: "Za poslední rok (únor 2024 – únor 2025) jsme zachytili 8,3 miliardy incidentů a to z 232 zemí a z jejich závislých území. Tyto útoky přišly od 6,2 milionu útočníků (respektive unikátních adres). SMTP minipot je stále nejlákavější pastí, zhruba 79 % útoků bylo směřováno na tento minipot, 16 % útoků směřovalo na minipot Telnet, 3 % útoků směřovaly na minipot HTTP a 2 % na minipot FTP. Dále jsme zaznamenali 3,2 milionu unikátních hesel a 318 tisíc unikátních loginů, které útočníci zkoušeli."
Byla vydána (Mastodon, 𝕏) nová verze 3.0.4 svobodné aplikace pro úpravu a vytváření rastrové grafiky GIMP (GNU Image Manipulation Program). Přehled novinek v oznámení o vydání a v souboru NEWS na GitLabu. Nový GIMP je již k dispozici také na Flathubu.
Byla vydána nová stabilní verze 7.4 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 136. Přehled novinek i s náhledy v příspěvku na blogu.
Jinak NSD se snad povinně učí na středních školách a většina ostatních věcí stejně byla uvedena jen jako fakt („že lineární algoritmus existuje atp.“), takže čtenář ani nemá co se snažit pochopit.Ano, kdyz to dostanou takto naservirovano (vsechno jiz pochopeno je jednoduche). NSD se sice uci, ale zvlastni je, ze kazdemu z cca 10-15 lidi jsem to musel vysvetlovat osobne jak to funguje, i kdyz je to trivialni (proste si nedocvakly ty dva-tri fakty). Proto jsem psal ten clanek. Tvrzeni "ctenar ani nema co pochopit" je asi jako dostat reseni na instanci NP-uplneho problemu a reknout "vzdyt to je jednoduche" kvuli tomu ze reseni je zverejneno a nerict nic o narocnosti nalezani reseni. BTW zpusobu pro GCD je spousta. Tim Euklidovym byste daleko nedosel. Samotny Bernstein je v zasade "mega-GCD-na-steroidech". Ale to nema cenu vysvetlovat, viz paper: http://cr.yp.to/lineartime/dcba-20040404.pdf Preji vesele a stastne grcani pri cteni. Taky nebudu vykladat jake triky jsem skutecne pouzil, nebo nedejboze davat sem kod pro script kiddies (napr. kazdemu algebraikovi musi prijit ta dlouha GCD rovnice podivna, jsou tam zbytecne veci navic). Tudiz evidentne algebraik nejste. Stejne ste IMHO jenom stoural. Hadat se nechci, jenom jsem uvedl nazor autora (vidite ted, jaka je to dementni argumentace?) Omluva prijde az od vas uvidim implementaci toho Bernsteinova algoritmu. Pak taky muzete napsat stokrat lepsi clanek o te implementaci. There's no royal road to crypto.
Nechce sa vam vyskusat O(n*log n) algoritmus zalozeny na tom, ze gcd(a,b,c,d) = gcd(gcd(a,b), gcd(c,d)) ? S ohladom na jednoduchost by v realite mohol dosahovat celkom dobre vysledky. Obvzlast ak sa berie do uvahy postupne zjednodusovanie vypoctu gcd vo vrstvach log n.
Implementacia v pythone asi nejak takto (pripadne pridat nejake optimalizacie ako lepsiu kniznicu pre gcd (ak je) a pod.):
from fractions import gcd def wgcd(d, u): if u - d == 1: return a[d] elif u - d == 2: return gcd(a[d], a[d+1]) else: return gcd(wgcd(d, d + (u - d)/2), wgcd(d + (u - d)/2, u)) a = [17*(x*2) for x in range(150000)] print(wgcd(0, len(a)))
Hm, ked tak rozmyslam, tak ta zlozitost sa pravdepodobne zmesti aj do O(n).
Konecne ta gcd rovnica z blogu zacina davat zmysel. Akosi som za gcd(N1,N2…Nm) povazoval gcd(N1,N2,N3 .. Nm) a nie gcd N1 s produktom N2 .. Nm. Vdaka za objasnenie.
Tiskni
Sdílej: