V Londýně probíhá dvoudenní Ubuntu Summit 25.10. Na programu je řada zajímavých přednášek. Zhlédnout je lze také na YouTube (23. 10. a 24. 10.).
Gemini CLI umožňuje používání AI Gemini přímo v terminálu. Vydána byla verze 0.10.0.
Konference OpenAlt 2025 proběhne již příští víkend 1. a 2. listopadu v Brně. Nabídne přibližně 80 přednášek a workshopů rozdělených do 7 tematických tracků. Program se může ještě mírně měnit až do samotné konference, a to s ohledem na opožděné úpravy abstraktů i případné podzimní virózy. Díky partnerům je vstup na konferenci zdarma. Registrace není nutná. Vyplnění formuláře však pomůže s lepším plánováním dalších ročníků konference.
Samsung představil headset Galaxy XR se 4K Micro-OLED displeji, procesorem Snapdragon XR2+ Gen 2, 16 GB RAM, 256 GB úložištěm, operačním systémem Android XR a Gemini AI.
Před konferencí Next.js Conf 2025 bylo oznámeno vydání nové verze 16 open source frameworku Next.js (Wikipedie) pro psaní webových aplikací v Reactu. Přehled novinek v příspěvku na blogu.
Sovereign Tech Fund oznámil finanční podporu následujících open source projektů: Scala, SDCC, Let's Encrypt, Servo, chatmail, Drupal, Fedify, openprinting, PHP, Apache Arrow, OpenSSL, R Project, Open Web Docs, conda, systemd a phpseclib.
Bylo vydáno OpenBSD 7.8. S předběžnou podporou Raspberry Pi 5. Opět bez písničky.
Valkey (Wikipedie) byl vydán v nové major verzi 9.0. Valkey je fork Redisu.
Byly publikovány informace o kritické zranitelnosti v knihovně pro Rust async-tar a jejích forcích tokio-tar, krata-tokio-tar a astral-tokio-tar. Jedná se o zranitelnost CVE-2025-62518 s CVSS 8.1. Nálezci je pojmenovali TARmageddon.
AlmaLinux přinese s verzí 10.1 podporu btrfs. XFS bude stále jako výchozí filesystém, ale instalátor nabídne i btrfs. Více informací naleznete v oficiálním oznámení.
Jinak NSD se snad povinně učí na středních školách a většina ostatních věcí stejně byla uvedena jen jako fakt („že lineární algoritmus existuje atp.“), takže čtenář ani nemá co se snažit pochopit.Ano, kdyz to dostanou takto naservirovano (vsechno jiz pochopeno je jednoduche). NSD se sice uci, ale zvlastni je, ze kazdemu z cca 10-15 lidi jsem to musel vysvetlovat osobne jak to funguje, i kdyz je to trivialni (proste si nedocvakly ty dva-tri fakty). Proto jsem psal ten clanek. Tvrzeni "ctenar ani nema co pochopit" je asi jako dostat reseni na instanci NP-uplneho problemu a reknout "vzdyt to je jednoduche" kvuli tomu ze reseni je zverejneno a nerict nic o narocnosti nalezani reseni. BTW zpusobu pro GCD je spousta. Tim Euklidovym byste daleko nedosel. Samotny Bernstein je v zasade "mega-GCD-na-steroidech". Ale to nema cenu vysvetlovat, viz paper: http://cr.yp.to/lineartime/dcba-20040404.pdf Preji vesele a stastne grcani pri cteni. Taky nebudu vykladat jake triky jsem skutecne pouzil, nebo nedejboze davat sem kod pro script kiddies (napr. kazdemu algebraikovi musi prijit ta dlouha GCD rovnice podivna, jsou tam zbytecne veci navic). Tudiz evidentne algebraik nejste. Stejne ste IMHO jenom stoural. Hadat se nechci, jenom jsem uvedl nazor autora (vidite ted, jaka je to dementni argumentace?) Omluva prijde az od vas uvidim implementaci toho Bernsteinova algoritmu. Pak taky muzete napsat stokrat lepsi clanek o te implementaci. There's no royal road to crypto.
Nechce sa vam vyskusat O(n*log n) algoritmus zalozeny na tom, ze gcd(a,b,c,d) = gcd(gcd(a,b), gcd(c,d)) ? S ohladom na jednoduchost by v realite mohol dosahovat celkom dobre vysledky. Obvzlast ak sa berie do uvahy postupne zjednodusovanie vypoctu gcd vo vrstvach log n.
Implementacia v pythone asi nejak takto (pripadne pridat nejake optimalizacie ako lepsiu kniznicu pre gcd (ak je) a pod.):
from fractions import gcd def wgcd(d, u): if u - d == 1: return a[d] elif u - d == 2: return gcd(a[d], a[d+1]) else: return gcd(wgcd(d, d + (u - d)/2), wgcd(d + (u - d)/2, u)) a = [17*(x*2) for x in range(150000)] print(wgcd(0, len(a)))
Hm, ked tak rozmyslam, tak ta zlozitost sa pravdepodobne zmesti aj do O(n).
Konecne ta gcd rovnica z blogu zacina davat zmysel. Akosi som za gcd(N1,N2…Nm) povazoval gcd(N1,N2,N3 .. Nm) a nie gcd N1 s produktom N2 .. Nm. Vdaka za objasnenie.
Tiskni
Sdílej: