Dnes a zítra probíhá vývojářská konference Google I/O 2025. Sledovat lze na YouTube a na síti 𝕏 (#GoogleIO).
V Bostonu probíhá konference Red Hat Summit 2025. Vybrané přednášky lze sledovat na YouTube. Dění lze sledovat na síti 𝕏 (#RHSummit).
Společnost Red Hat oficiálně oznámila vydání Red Hat Enterprise Linuxu 10. Vedle nových vlastností přináší také aktualizaci ovladačů a předběžné ukázky budoucích technologií. Podrobnosti v poznámkách k vydání.
Tuto sobotu 24. května se koná historicky první komunitní den projektu Home Assistant. Zváni jsou všichni příznivci, nadšenci a uživatelé tohoto projektu. Pro účast je potřebná registrace. Odkazy na akce v Praze a v Bratislavě.
Troy Hunt představil Have I Been Pwned 2.0, tj. nový vylepšený web služby, kde si uživatelé mohou zkontrolovat, zda se jejich hesla a osobní údaje neobjevily v únicích dat a případně se nechat na další úniky upozorňovat.
Microsoft představil open source textový editor Edit bežící v terminálu. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT.
V Seattlu a také online probíhá konference Microsoft Build 2025. Microsoft představuje své novinky. Windows Subsystem for Linux je nově open source. Zdrojové kódy jsou k dispozici na GitHubu pod licencí MIT.
Z příspěvku Turris Sentinel – co přinesl rok 2024 na blogu CZ.NIC: "Za poslední rok (únor 2024 – únor 2025) jsme zachytili 8,3 miliardy incidentů a to z 232 zemí a z jejich závislých území. Tyto útoky přišly od 6,2 milionu útočníků (respektive unikátních adres). SMTP minipot je stále nejlákavější pastí, zhruba 79 % útoků bylo směřováno na tento minipot, 16 % útoků směřovalo na minipot Telnet, 3 % útoků směřovaly na minipot HTTP a 2 % na minipot FTP. Dále jsme zaznamenali 3,2 milionu unikátních hesel a 318 tisíc unikátních loginů, které útočníci zkoušeli."
Byla vydána (Mastodon, 𝕏) nová verze 3.0.4 svobodné aplikace pro úpravu a vytváření rastrové grafiky GIMP (GNU Image Manipulation Program). Přehled novinek v oznámení o vydání a v souboru NEWS na GitLabu. Nový GIMP je již k dispozici také na Flathubu.
Byla vydána nová stabilní verze 7.4 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 136. Přehled novinek i s náhledy v příspěvku na blogu.
Programming stuff. And stuff.
Na notebooku (Core i5-2520M) s obyčeným pythoním gmpy (wrapper GMP) dostávám 170794 GCD za sekundu na 1024-4096 bit RSA modulech. Lenstra testoval 4.7 miliona 1024-bit modulů a 6.4 modulů celkově. V mé denně updatované databázi se nachází 1424938 unikátních RSA modulů, které se dělí podle velikosti modulu následovně (pár ostatních s jinými velikosti vynechávám):
rsa_bits | count
----------+--------
4096 | 22367
1024 | 491356
2048 | 908103
Nejjednodušší je prostě udělat GCD každého modulu s každým jiným, což dává složitost O(N2). Rychlost operace GCD se schová do nějaké konstanty, protože velikost modulů je shora omezena. Pro uvedený notebook by to znamenalo 4.1 let na otestování na 4.7M modulů nebo 7.6 let pro otestování 6.4M modulů.
Místo testování každého modulu s každým, budeme testovat jenom ty se stejným modulem, protože moduly s různě velkými moduly téměř jistě nebudou sdílet prvočíslo. Kvůli kvadratické složitosti to dost pomůže proti "triviálnímu" algoritmu. Třeba pro otestování všech klíčů z mé DB by časy byly:
rsa_bits | čas
----------+--------
4096 | 50 min
1024 | 17 dní
2048 | 56 dní
Místo testovaní všech klíčů se můžeme spokojit třeba s nalezením jenom P=50% z nich. Tím by šlo algoritmus ještě více urychlit. Podle výsledků Lenstru je 0.2% klíčů sdílejích prvočísla. Oříšek je zde v tom, že existuje 1995 skupin, které navíc nejsou uniformně rozloženy. Když si trocha zjednodušíme předpoklady, šlo by se dopočítat k očekávanému počtu testů.
Např. jaký je očekáváný počet GCD testů, pokud budeme předpokládat že slabé klíče jsou uniformně rozloženy v těch 1995 skupinách? Kolik by to bylo, kdybychom předpokládali existenci jenom jedné skupiny? Kdyby se to někomu chtělo spočítat, ocenil bych to, teď si mi to už počítat nechce . Ten případ s jednou skupinou by měl být celkem snadno spočítatelný.
Možná existují další algebraické triky jak ještě víc omezit počet modulů k testování. Při kvadratické náročnosti vzhledem k počtu modulů by to mohlo ještě značně urychlit. Možná když budu mít chvíli času, tak si osvěžím z Koblitze jestli to lze algebraicky znásilnit ještě víc. Ale neodmítnu jestli se někdo podělí o nápad
Vychází z algoritmu, který publikoval Dan Bernstein v Journal of Algorithms. Je založen na triku jak naráz spočítat GCD modulu N1 se všema ostatníma:
gcd(N1,N2…Nm) = gcd(N1, (N1*N2*…*Nm mod N12)/N1)
Z odhadů je vidět, že i s takto jednoduchými algoritmy to lze na nějakém mírně lepším clusteru nebo FPGA "vydrtit" v celkem rozumném čase. Používat GPU na GCD jsem taky nezkoušel. S lineárním algoritmem to dá běžné PC za pár hodin.
Tiskni
Sdílej:
Jinak NSD se snad povinně učí na středních školách a většina ostatních věcí stejně byla uvedena jen jako fakt („že lineární algoritmus existuje atp.“), takže čtenář ani nemá co se snažit pochopit.Ano, kdyz to dostanou takto naservirovano (vsechno jiz pochopeno je jednoduche). NSD se sice uci, ale zvlastni je, ze kazdemu z cca 10-15 lidi jsem to musel vysvetlovat osobne jak to funguje, i kdyz je to trivialni (proste si nedocvakly ty dva-tri fakty). Proto jsem psal ten clanek. Tvrzeni "ctenar ani nema co pochopit" je asi jako dostat reseni na instanci NP-uplneho problemu a reknout "vzdyt to je jednoduche" kvuli tomu ze reseni je zverejneno a nerict nic o narocnosti nalezani reseni. BTW zpusobu pro GCD je spousta. Tim Euklidovym byste daleko nedosel. Samotny Bernstein je v zasade "mega-GCD-na-steroidech". Ale to nema cenu vysvetlovat, viz paper: http://cr.yp.to/lineartime/dcba-20040404.pdf Preji vesele a stastne grcani pri cteni. Taky nebudu vykladat jake triky jsem skutecne pouzil, nebo nedejboze davat sem kod pro script kiddies (napr. kazdemu algebraikovi musi prijit ta dlouha GCD rovnice podivna, jsou tam zbytecne veci navic). Tudiz evidentne algebraik nejste. Stejne ste IMHO jenom stoural. Hadat se nechci, jenom jsem uvedl nazor autora (vidite ted, jaka je to dementni argumentace?) Omluva prijde az od vas uvidim implementaci toho Bernsteinova algoritmu. Pak taky muzete napsat stokrat lepsi clanek o te implementaci. There's no royal road to crypto.
Nechce sa vam vyskusat O(n*log n) algoritmus zalozeny na tom, ze gcd(a,b,c,d) = gcd(gcd(a,b), gcd(c,d)) ? S ohladom na jednoduchost by v realite mohol dosahovat celkom dobre vysledky. Obvzlast ak sa berie do uvahy postupne zjednodusovanie vypoctu gcd vo vrstvach log n.
Implementacia v pythone asi nejak takto (pripadne pridat nejake optimalizacie ako lepsiu kniznicu pre gcd (ak je) a pod.):
from fractions import gcd def wgcd(d, u): if u - d == 1: return a[d] elif u - d == 2: return gcd(a[d], a[d+1]) else: return gcd(wgcd(d, d + (u - d)/2), wgcd(d + (u - d)/2, u)) a = [17*(x*2) for x in range(150000)] print(wgcd(0, len(a)))
Hm, ked tak rozmyslam, tak ta zlozitost sa pravdepodobne zmesti aj do O(n).
Konecne ta gcd rovnica z blogu zacina davat zmysel. Akosi som za gcd(N1,N2…Nm) povazoval gcd(N1,N2,N3 .. Nm) a nie gcd N1 s produktom N2 .. Nm. Vdaka za objasnenie.