Homebrew (Wikipedie), správce balíčků pro macOS a od verze 2.0.0 také pro Linux, byl vydán ve verzi 4.5.0. Na stránce Homebrew Formulae lze procházet seznamem balíčků. K dispozici jsou také různé statistiky.
Byl vydán Mozilla Firefox 138.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 138 je již k dispozici také na Flathubu a Snapcraftu.
Šestnáctý ročník ne-konference jOpenSpace se koná 3. – 5. října 2025 v Hotelu Antoň v Telči. Pro účast je potřeba vyplnit registrační formulář. Ne-konference neznamená, že se organizátorům nechce připravovat program, ale naopak dává prostor všem pozvaným, aby si program sami složili z toho nejzajímavějšího, čím se v poslední době zabývají nebo co je oslovilo. Obsah, který vytvářejí všichni účastníci, se skládá z desetiminutových
… více »Richard Stallman přednáší ve středu 7. května od 16:30 na Technické univerzitě v Liberci o vlivu technologií na svobodu. Přednáška je určená jak odborné tak laické veřejnosti.
Jean-Baptiste Mardelle se v příspěvku na blogu rozepsal o novinkám v nejnovější verzi 25.04.0 editoru videa Kdenlive (Wikipedie). Ke stažení také na Flathubu.
TmuxAI (GitHub) je AI asistent pro práci v terminálu. Vyžaduje účet na OpenRouter.
Byla vydána nová verze R14.1.4 desktopového prostředí Trinity Desktop Environment (TDE, fork KDE 3.5, Wikipedie). Přehled novinek i s náhledy v poznámkách k vydání. Podrobný přehled v Changelogu.
Bylo vydáno OpenBSD 7.7. Opět bez písničky.
V Tiraně proběhl letošní Linux App Summit (LAS) (Mastodon). Zatím nesestříhané videozáznamy přednášek jsou k dispozici na YouTube.
V neděli choď na mne s kombinatorikou ... řešení vidím a to mi stačí
(4n) Je celkem ( 3) způsobů jak vybrat tři body, trojúhelník to nebude, když body leží na přímce - (n) tedy v (3) výberech pro každou stranu čtverce, výsledek je: (4n) (n) ( 3) - 4*(3)
Já bych řekl, že první vrchol vybírám na kterékoliv straně čtverce, tedy 4.(n nad 1) možností, druhý vrchol na jedné ze zbývajících tří, tedy 3.(n nad 1) možností a poslední na jedné ze zbývajících dvou, tedy 2.(n nad 1) možností. To krát to krát to je suma sumárum 24n^3 možností.
Jasně, jsem pako. Těch se dvěma vrcholy na jedné straně a se třetím jinde je 4(n nad 2) + 3n.
Jasně, jsem pako. Těch se dvěma vrcholy na jedné straně a se třetím jinde je 4(n nad 2) + 3n.
24n^3 (n) ----- + 6n^3 - 6n^2 = 10n^3 - 6n^2 Je jich 4*(2)*3n, celkem je to tedy 6
Jo, to plus je překlep, patří tam samozřejmě krát
(n) Tři body můžeme vybrat (3) způsoby, (p) z toho leží v (3) možnostech na jedné přímce, (n) (p) tedy výsledek je (3) - (3).to by mělo být totožné s tímto řešením:
počet trojúhelníků s vrcholy, které na přímce neleží, (n - p) je ( 3), počet trojúhelníků, které mají (n - p) na přímce právě jeden vrchol je p*( 2) a počet trojúhelníků, které mají na přímce právě (p) dva vrcholy je (n - p)(2), dohromady to dá celkový počet trojúhelníků
Tady mi to vychází stejně, tedy (n-p nad 3) + (n-p nad 2)(p nad 1) + (n-p nad 1)(p nad 2). První člen jsou trojúhelníky se všemi vrcholy mimo přímku, druhý trojúhelníky se dvěma vrcholy mimo přímku a jedním na n, třetí pak trojúhelníky se dvěma vrcholy na přímce a jedním mimo ni.
Po otrocké úpravě (bez záruky): (n - p)(4n^2 + 3np^2 - 11np - 6n - 3p^3 + 7p^2 + 6p + 2)/6.
(n - p)(4n^2 + 3np^2 - 11np - 6n - 3p^3 + 7p^2 + 6p + 2)/6To je docela zvláštní výsledek, neboť počet trojúhelníků by měl být celočíslený, ale vzhledem k tomu, že se tam vyskytují koeficienty jako např. 11/6 nebo 7/6, tak si nejsem jist tou celočíselností.
Zvláštní jistě být může, nicméně není nutně špatný. Čitatel je vždy, jak ukazují následující tabulky, dělitelný i dvěma i třemi, tedy je dělitelný šesti, tedy je výsledek celý.
n p | n-p || 4n^2 | 3np^2 | 11np | 6n | 3p^3 | 7p^2 | 6p | 2 | sum | product ----+-----++------+-------+------+----+------+------+----+---+-----+-------- S S | S || | S S L | L || S | S | S | S | L | L | S | S | S | S L S | L || S | S | S | S | S | S | S | S | S | S L L | S || | S n%3 p%3 | n-p | 4n^2 | 3np^2 | 11np | 6n | 3p^3 | 7p^2 | 6p | 2 | sum | product --------+-----+------+-------+------+----+------+------+----+---+-----+-------- 0 0 | 0 | | 0 1 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 2 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 0 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 1 1 | 0 | | 0 2 1 | 1 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 0 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 1 2 | 2 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 2 2 | 0 | | 0
Nic dalšího už dneska nedokazuju
Tiskni
Sdílej: