Byl vydán Debian Installer Trixie RC 2, tj. druhá RC verze instalátoru Debianu 13 s kódovým názvem Trixie.
Na čem pracují vývojáři webového prohlížeče Ladybird (GitHub)? Byl publikován přehled vývoje za červen (YouTube).
Libreboot (Wikipedie) – svobodný firmware nahrazující proprietární BIOSy, distribuce Corebootu s pravidly pro proprietární bloby – byl vydán ve verzi 25.06 "Luminous Lemon". Přidána byla podpora desek Acer Q45T-AM a Dell Precision T1700 SFF a MT. Současně byl ve verzi 25.06 "Onerous Olive" vydán také Canoeboot, tj. fork Librebootu s ještě přísnějšími pravidly.
Licence GNU GPLv3 o víkendu oslavila 18 let. Oficiálně vyšla 29. června 2007. Při té příležitosti Richard E. Fontana a Bradley M. Kuhn restartovali, oživili a znovu spustili projekt Copyleft-Next s cílem prodiskutovat a navrhnout novou licenci.
Svobodný nemocniční informační systém GNU Health Hospital Information System (HIS) (Wikipedie) byl vydán ve verzi 5.0 (Mastodon).
Open source mapová a navigační aplikace OsmAnd (OpenStreetMap Automated Navigation Directions, Wikipedie, GitHub) oslavila 15 let.
Vývojář Spytihněv, autor počítačové hry Hrot (Wikipedie, ProtonDB), pracuje na nové hře Brno Transit. Jedná se o příběhový psychologický horor o strojvedoucím v zácviku, uvězněném v nejzatuchlejším metru východně od všeho, na čem záleží. Vydání je plánováno na čtvrté čtvrtletí letošního roku.
V uplynulých dnech byla v depu Českých drah v Brně-Maloměřicích úspěšně dokončena zástavba speciální antény satelitního internetu Starlink od společnosti SpaceX do jednotky InterPanter 660 004 Českých drah. Zástavbu provedla Škoda Group. Cestující se s InterPanterem, vybaveným vysokorychlostním satelitním internetem, setkají například na linkách Svitava Brno – Česká Třebová – Praha nebo Moravan Brno – Břeclav – Přerov – Olomouc.
Byla vydána nová verze 8.7.0 správce sbírky fotografií digiKam (Wikipedie). Přehled novinek i s náhledy v oficiálním oznámení (NEWS). Nejnovější digiKam je ke stažení také jako balíček ve formátu AppImage. Stačí jej stáhnout, nastavit právo ke spuštění a spustit.
Před 30 lety, k 1. 7. 1995, byl v ČR liberalizován Internet - tehdejší Eurotel přišel o svou exkluzivitu a mohli začít vznikat první komerční poskytovatelé přístupu k Internetu [𝕏].
Problém je v tom, že promítám na rovinu a ne na kulovou plochu, navíc pod úhlem.Takze "X Galvo" nemiri kolmo na promitaci plochu?
V podstatě mám souřadnicemi dané 2 úhly - jeden který svírá paprsek proti středové ose promítání a pak úhel, který svírá spojnice středu plochy proti bodu daném souřadnicemi. Potřebuju nějakou funkci, která úhel paprsku rozloží úhlem souřadnic na úhly natočení zrcátek. To mi nikdo zatím nezodpověděl - jakým způsobem se skládají a rozkládají úhly do jiných rovin. Vím, že vektor jde rozložit podle úhlu do navzájem kolmých složek, ale jak totéž udělat s úhlem rozkládaným jiným úhlem mi uniká.Priznam se, ze tenhle odstavec vubec nechapu. Takhle zatim rozumim tomu zadani: mas nejaky bod (x, y) na promitaci plose a chces najit natoceni "X Galvo" a "Y Galvo", aby paprsek dopadl na ten bod.
Takze "X Galvo" nemiri kolmo na promitaci plochu?Nejspíš má nějaké problémy s geometrií. Proto bych si promítl mřížku, zaměřil skutečné souřadnice a aproximoval sítí.
Takhle zatim rozumim tomu zadani: mas nejaky bod (x, y) na promitaci plose a chces najit natoceni "X Galvo" a "Y Galvo", aby paprsek dopadl na ten bod.Řekl bych, že jo.
Počkat, on to ten pincushion přeci jen bude.Pokud si to dobře pamatuju, tohle se v některých projektorech řeší asférickou čočkou, která je podobná běžné spojce, ale je uprostřed mnohem plošší než na okrajích, tudíž čím je paprsek dále od osy, tím více dovnitř se láme ve srovnání s normální sférickou čočkou (viz obrázek na této stránce o asférických čočkách, tedy až na to, že tam je asférická naopak a potlačuje soudkovitost).
a
a b
. Pokud a = pi/4
a b = pi/4
, tak by paprsek mel smerovat do stredu (tzn. podobne jako na tom obrazku). Je samozrejme mozny, ze tam je nekde chyba, pravdepodobnost chyby odhaduju na 50% :) Ale postup by mel byt ok.
Pouzivam stejny system souradnic jako na tomhle obrazku.
Myslenka je jednoducha, pokud vim normalovy vektor roviny a smer dopadu paprsku, muzu spocitat vektor odrazu.
Vektor l1
(light 1) je vektor, ktery smeruje z mista dopadu na prvni zrcadlo ke zdroji.
l1 = [0, 1, 0]
n1
je normalovy vektor roviny prvniho zrcadla, normalizovany na delku 1.
n1 = [0, cos(a), sin(a)]
r1
je vektor odrazu paprsku od prvniho zrcadla, smeruje pryc od mista dopadu. Jak spocitat vektor odrazu je vysvetleno zde.
r1 = 2*(n1*l1)*n1 - l1 = [0, 2*cos(a)*cos(a) - 1, 2*sin(a)*cos(a)]
Normalovy vektor roviny druheho zrcadla:
n2 = [cos(b), 0, -sin(b)]
A l2
je totez co r2
, jenom ma opacny smer:
l2 = -r1 = [0, 1 - 2*cos(a)*cos(a), -2*sin(a)*cos(a)]
Vektor odrazu od druheho zrcadla spocitam stejne jako pro prvniho zrcadla:
r2 = [4*sin(a)*cos(a)*sin(b)*cos(b), 2*cos(a)*cos(a) - 1, 2*sin(a)*cos(a) * (1-2*sin(b)*sin(b))]
Z vektoru r2
, ktery smeruje na promitaci plochu, je ted potreba spocitat misto dopadu (projx
a projy
). Pokud mam vektor [x, y, z]
, tak projx = y/x
a projy = z/x
. Obe souradnice je jeste potreba vynasobit konstantou s
podle vzdalenosti platna.
Takze:
projx = s * (2*cos(a)*cos(a)-1) / (4*sin(a)*cos(a)*sin(b)*cos(b))
projy = s * (2*sin(a)*cos(a)*(1-2*sin(b)*sin(b))) / (4*sin(a)*cos(a)*sin(b)*cos(b))
Pokud chces umet prevest projx
a projy
na a
a b
, tak je potreba resit soustavu dvou rovnic, coz jsem nezkousel, ale vypada to slozite.
a
a b
jsou natoceni X Galvo a Y Galvo, na obrazku jsou natoceny priblizne na 45 stupnu (pi/4 v radianech).
a
zafixuje na 45 stupnu, tak
y = (2*sin(a)*cos(a)*(1-2*sin(b)*sin(b))) / (4*sin(a)*cos(a)*sin(b)*cos(b))
jde podle wolfram alpha upravit na y = cotan(2*b)
.
y
nám vyšlo stejně (akorát já uvažuju jinej úhel, proto tg místo cotg). Jestli vyšlo stejně i x
už opravdu počítat nebudu. Dobrou noc r2
(vektor paprsku smerujiciho na platno) wolfram alpha zjednodusil na [sin(2a) * sin(2b), cos(2a), sin(2a) * cos(2b)]
Dobrou alpha = 0.5 * acos(x / sqrt(x^2 + y^2 + 1))
beta = 0.5 * acot(y)
Pokud zafixuju x nebo y na 0, tak to dava stejny vysledky jako atan(uhel)/2. Alpha i beta jsou uhly 0 az 90, kdyz jsou oba 45, tak paprsek smeruje doprostred.
Kdyz budu mit zrcatko jedne osy pevne a druhym budu otacet, delka pruvodice bude v kazdem bode jina a tim padem to nenakresli primku.To, že délka průvodiče je jiná, ještě neznamená, že to nevykreslí přímku. Když si vemeš do ruky laser, budeš jím svítit na zeď a budeš jim vodorovně otáčet, tak taky promítneš přímku, přestože dráha je v každým bodě jinak dlouhá. Jestliže se ti to opravdu chová tak, jak popisuješ, tak to znamená, že to tvoje zařízení neodpovídá tomu modelu na obrázku.
Zadani je jasne - vypocitat uhly zrcatek tak, aby paprsek miril na bod zadany souradnicemi na rovine. Ted vubec neuvazuju vlastni zkresleni projektoru, protoze v realu se rozdilna vzdalenost zrcatek projevi mensi chybou, nez je velikost tecky laseru. Uvazuju idealni projektor, ktery promita idealne na kulovou plochu (krivkovy integral po kulove plose je linearni vuci uhlu).
Vzhledem k tomu, kolik lidi si na tom uz vylamalo zuby a vlastne mi nikdo zatim presne nerekl, jak to spravne je, nepovazuju tuhle ulohu za trivialni .
a vlastne mi nikdo zatim presne nerekl, jak to spravne je, nepovazuju tuhle ulohu za trivialniNo, kdyz ja dve hodiny neco (zdarma) pocitam a ty to odbydes ala "takhle to vyjit nemuze, nejak se mi to nezda", ani se neobtezujes to vyzkouset (natoz se zmyslet nad postupem reseni), tak clovek uplne ztrati chut se tim vubec zabyvat. Spocitej si to sam, kdyz ses tak chytrej, lituju toho ztracenyho casu
Sry, tak jsem to vubec nemyslel.Jasne, neni problem, pocit ukrivdenosti uz vyprchal
Tiskni
Sdílej: