Byla vydána nová verze 18 integrovaného vývojového prostředí (IDE) Qt Creator. S podporou Development Containers. Podrobný přehled novinek v changelogu.
Cursor (Wikipedie) od společnosti Anysphere byl vydán ve verzi 2.0. Jedná se o multiplatformní proprietární editor kódů s podporou AI (vibe coding).
Google Chrome 142 byl prohlášen za stabilní. Nejnovější stabilní verze 142.0.7444.59 přináší řadu novinek z hlediska uživatelů i vývojářů. Podrobný přehled v poznámkách k vydání. Opraveno bylo 20 bezpečnostních chyb. Za nejvážnější z nich bylo vyplaceno 50 000 dolarů. Vylepšeny byly také nástroje pro vývojáře.
Pro moddery Minecraftu: Java edice Minecraftu bude bez obfuskace.
Národní identitní autorita, tedy NIA ID, MeG a eOP jsou nedostupné. Na nápravě se pracuje [𝕏].
Americký výrobce čipů Nvidia se stal první firmou na světě, jejíž tržní hodnota dosáhla pěti bilionů USD (104,5 bilionu Kč). Nvidia stojí v čele světového trhu s čipy pro umělou inteligenci (AI) a výrazně těží z prudkého růstu zájmu o tuto technologii. Nvidia již byla první firmou, která překonala hranici čtyř bilionů USD, a to letos v červenci.
Po Canonicalu a SUSE oznámil také Red Hat, že bude podporovat a distribuovat toolkit NVIDIA CUDA (Wikipedie).
TrueNAS (Wikipedie), tj. open source storage platforma postavená na Linuxu, byl vydán ve verzi 25.10 Goldeye. Přináší NVMe over Fabric (NVMe-oF) nebo OpenZFS 2.3.4.
Byla vydána OpenIndiana 2025.10. Unixový operační systém OpenIndiana (Wikipedie) vychází z OpenSolarisu (Wikipedie).
České základní a střední školy čelí alarmujícímu stavu kybernetické bezpečnosti. Až 89 % identifikovaných zranitelností v IT infrastruktuře vzdělávacích institucí dosahuje kritické úrovně, což znamená, že útočníci mohou vzdáleně převzít kontrolu nad klíčovými systémy. Školy navíc často provozují zastaralé technologie, i roky nechávají zařízení bez potřebných aktualizací softwaru a používají k nim pouze výchozí, všeobecně známá
… více »1. Rychlost čtení a zápisu umí většinou už předinstalovaný (v prostředí Gnome) program "gnome-disk-utility".https://www.maketecheasier.com/benchmark-storage-devices-gnome-disk-utility/ To vypadá ne-moc přesně, ale zkusím když je to jediné normal-user řešení. Snad to bude měřit pokaždé stejně na stejném disku, protože jich potřebuju porovnat víc a pokud budu dostávat pokaždé jiné výsledky i jen na tom samém, nebude mi to moc platné.
z historie ale vím že takové odkazy mohou nabízet už mrtvé projekty, shit-ware apod.Tak s takým typom (shhh) programového vybavenia sa prosím odsťahujte mimo Linuxu, mladý pán.
skóre: 63?
Problém je v tom, že na rozdíl od měření HDD u nichž je na například pro sekvenční rychlost významným faktorem pouze vzdálenost stopy od vnějšího okraje (průběžné se ke středu snižující počet sektorů na stopu) u SSD/Flash je těch faktorů ovlivňující výkon daleko více.
Jednoduchý nástroj jako zmíněné HDTune může poskytnou značně zavádějící výsledky (jeho free verze 2.55 z roku 2008 je tj. prakticky z před SSD éry).
Zde je průběh rychlosti sustain zápisu na dvou odlišných SSD.
U NVMe Samsungu je vidět, že po zaplnění pseudo-SLC cache je schopen stále trvalého zápisu (přímo do TLC buněk) cca 600MB/s.
https://www.monitos.cz/tmp/samsung_evo_960_500g_nvme.png
U levného SATA Kingstonu je po vyčerpání pseudo-SLC cache dosahováno rychlosti <50MB/s (musí uvolňovat prostor pseudo-SLC cache a zapisovat finálně jako TLC).
https://www.monitos.cz/tmp/Kingston_A400_240gb_dd.png
Pokud by benchmark byl omezen na pouhých 50GB (většina benchmarkovacích nástrojů testuje na objemech ještě menších) závěr by zněl, že Samsung je v sekvečním zápisu pouze o 40% rychlejší (600MB/s versus 420MB/s).
Docela by mě zajímalo, co je to „přenosová rychlost disku“. To já když přenáším disk z domova do kanclu, někdy dosáhnu přenosové rychlosti až 5 km/h.
Záleží na tom, jak se disk používá a na které vrstvě chceme něco měřit. Dejme tomu, typická situace, že mám třeba přímo na disku /dev/sdx nějaký LUKS kontejner /dev/mapper/luks_kontejner_x a v kontejneru pak Btrfs namountovaný (ať nežeru) do /mnt.
Ke všem pokusům bych si napřed spustil někde bokem v jiném terminálu něco takového (a výstup bych dle potřeby a chuti ukládal):
iostat -x 1 /dev/sdx /dev/mapper/luks_kontejner_x
Může mě zajímat, jak rychle přečtu samotný disk bez overheadu na šifrování, LBA po LBA, od začátku do konce:
pv -arb < /dev/sdx > /dev/null
(Pokud je disk už v háji a jde jen o sběr dat pro účely reklamace, přidá se klidně -E, což skvěle ukáže nejrůznější kombinace chyb čtení + nečitelných LBA s mizerným výkonem (protože to po chybě nepřestane (zkoušet) číst). U funkčního disku, u kterého ještě záleží na datech, bych -E nechtěl; tam je naopak správné po první chybě přestat a zamyslet se.)
Může mě zajímat, jak rychle přečtu LUKS kontejner, tj. jestli mi to šifrování správně hardwarově akceleruje a nezpůsobuje krk láhve:
pv -arb < /dev/mapper/luks_kontejner_x > /dev/null
Může mě zajímat, jak rychle přečtu nějaký veliký soubor na úrovni filesystému:
pv -arb < /mnt/veliký_soubor > /dev/null
Tohle↑ se dá nahradit taky třeba zápisem nějakých náhodných dat; na úrovni filesystému už se dá zkoušet i rychlost zápisu. Na úrovni disku nebo LUKS je to … složitější.
Může mě zajímat, jak rychle se přečte všechno v /mnt, tedy se všemi vrstvami abstrakce (LUKS, Btrfs) — buď opravdu všechno (první příklad) nebo subvolume viditelný z /mnt (druhý příklad):
btrfs scrub start -B /mnt btrfs scrub status /mnt # za běhu výše uvedeného
tar --one-file-system -c /mnt | pv -arb > /dev/null
Tak takovou situaci (taky) řeší moje odpověď výše.
Tiskni
Sdílej: