Protokol IPv6 má již 30 let. První návrh specifikace RFC 1883 je z prosince 1995.
Byli vyhlášeni vítězové ocenění Steam Awards 2025. Hrou roku a současně nejlepší hrou, která vám nejde, je Hollow Knight: Silksong.
Byla vydána nová verze 26.0 linuxové distribuce Manjaro (Wikipedie). Její kódové jméno je Anh-Linh. Ke stažení je v edicích GNOME, KDE PLASMA a XFCE.
Jednotný seznam blokovaných internetových stránek vedený Českým telekomunikační úřadem obsahoval také Český telekomunikační úřad.
Byl představen webový prohlížeč Brow6el, běžící v terminálu. Pro prohlížení webu je využit Chromium Embedded Framework, vyrendrovaná webová stránka je následně zobrazena v terminálu převodem na sixely pomocí knihovny libsixel. Brow6el se ovládá modálním klávesnicovým rozhraním, inspirovaném populárním textovým editorem Vim. Demonstrační video s ukázkou používání.
Společnost Pebble představila (YouTube) chytré hodinky Pebble Round 2. S kulatým e-paper displejem, s open source PebbleOS a vydrží baterie přibližně dva týdny. Předobjednat je lze za 199 dolarů s plánovaným dodáním v květnu.
Na novoroční inauguraci starosty New Yorku Zohrana Mamdaniho bylo zakázáno si s sebou přinést Raspberry Pi anebo Flipper Zero. Raspberry Pi i Flipper Zero jsou explicitně uvedeny v seznamu zakázaných věcí jak na na veřejné pozvánce, tak i na oficiálních stránkách města.
OpenTTD (Wikipedie), tj. open source klon počítačové hry Transport Tycoon Deluxe, byl vydán v nové stabilní verzi 15.0. Přehled novinek v seznamu změn a také na YouTube. OpenTTD lze instalovat také ze Steamu.
Správce oken IceWM byl vydán ve verzi 4.0.0, která např. vylepšuje navigaci v přepínání velkého množství otevřených oken.
Od 1. ledna 2026 jsou všechny publikace ACM (Association for Computing Machinery) a související materiály přístupné v její digitální knihovně. V rámci této změny je nyní digitální knihovna ACM nabízena ve dvou verzích: v základní verzi zdarma, která poskytuje otevřený přístup ke všem publikovaným výzkumům ACM, a v prémiové zpoplatněné verzi, která nabízí další služby a nástroje 'určené pro hlubší analýzu, objevování a organizační využití'.
pid=fork();
for(i=0; i<n; i++){
switch(fork){
case -1: err(...);
case 0: child(i, getpid());
case 1: -zaslani zpravy potomkovi-; wait(&stav);
}
}
int child(int i, pid_t mypid){
printf("%d: %d\n", num, chpid);
(void) signal(SIGUSR1, got_signal);
pause();
exit(0);
}
Tohle nedela vlastne nic, protoze zaroven nevim, jak zjistit pid potomka. fork(). Za prvé: PID potomka dostane rodič jako návratovou hodnotu funkce fork(). Za druhé: rodič i potomek pokračují dál návratem z funkce fork() a wait() můžete volat kdykoli později, takže vám nic nebrání si naforkovat potomků, kolik budete chtít, a pak na teprve čekat na jejich skončení.
pid=fork();
for(i=0; i<n; i++){
switch(fork){
Nechtěl jsi spíš něco jako toto?:
for(i=0; i<n;; i++){
pid=fork();
switch(pid){
Ked to chces spravit, ako si napisal, zaznamenaj si pid vsetkych procesov do nejakeho pola, a az vsetky procesy vytvoris, mozes im posielat signaly podla libosti
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/select.h>
#include <arpa/inet.h>
#ifndef POOL
#define POOL 10
#endif
int pipes[POOL][2]; /* roury, 0 = nic */
pid_t pids[POOL]; /* podprocesy, 0 = nic */
int main(int argc, char **argv) {
int i, j, status = 0;
struct in_addr ipv4a;
char ipv4as[INET_ADDRSTRLEN], line[100], *p;
struct hostent *he = NULL;
fd_set fds;
for (i = 0; i < POOL; i++) pipes[i][0] = pipes[i][1] = pids[i] = 0;
for (i = 0; i < POOL; i++) { /* tvorba podprocesů */
if (pipe(pipes[i]) < 0) { perror("Chyba roury"); break; }
if ((pids[i] = fork()) < 0) { perror("Chyba větvení"); break; }
if (pids[i] == 0) { /* podproces */
close(pipes[i][1]); /* podproces bude jen číst */
while ((j = read(pipes[i][0], &ipv4a, sizeof(ipv4a))) > 0) {
if (inet_ntop(AF_INET, &ipv4a, ipv4as, sizeof(ipv4as)) == NULL)
printf("Byla předána chybná adresa.\n");
else
if ((he = gethostbyaddr(&ipv4a, sizeof(ipv4a), AF_INET)) != NULL)
printf("%s -> %s\n", ipv4as, he->h_name);
else
printf("Nezjištěn záznam pro %s (#%d - %s)\n", ipv4as, h_errno,
h_errno == HOST_NOT_FOUND ? "počítač nenalezen" :
h_errno == NO_RECOVERY ? "chyba DNS serveru" :
h_errno == TRY_AGAIN ? "zopakovat požadavek" : "chyba");
}
if (j < 0)
printf("Chyba v %d. procesu: %s\n", i+1, strerror(errno));
close(pipes[i][0]); /* už bylo dočteno */
exit(j == 0 ? 0 : 1);
} else
close(pipes[i][0]); /* hlavní proces bude jen zapisovat */
}
if (i < POOL) status |= 1;
else
while (!feof(stdin)) { /* načítání adres */
line[0] = '\0'; /* čištění řádku */
if (fgets(line, sizeof(line), stdin) == NULL) /* kontrola chyb */
if (!feof(stdin)) { /* před koncem souboru je to opravdu chyba */
perror("Chyba čtení");
status |= 2;
break;
}
if ((p = strrchr(line, '\n')) != NULL) *p = '\0'; /* vyhodíme '\n' */
if (line[0] == '\0') continue; /* přeskočíme prázdné řádky */
if (inet_pton(AF_INET, line, &ipv4a) <= 0) { /* neplatná adresa */
printf("Adresa '%s' je neplatná.\n", line);
status |= 4;
} else { /* pošleme požadavek podprocesu */
inet_ntop(AF_INET, &ipv4a, ipv4as, sizeof(ipv4as));
FD_ZERO(&fds); /* vyrobíme nový seznam rour pro výstup */
j = 0;
for (i = 0; i < POOL; i++) {
FD_SET(pipes[i][1], &fds);
if (j < pipes[i][1]) j = pipes[i][1]; /* select chce max. hodnotu */
}
select(j+1, NULL, &fds, NULL, NULL); /* najdeme volnou rouru */
for (i = 0; i < POOL; i++)
if (FD_ISSET(pipes[i][1], &fds)) {
write(pipes[i][1], &ipv4a, sizeof(ipv4a)); /* pošleme požadavek */
break;
}
}
}
for (i = 0; i < POOL; i++) if (pipes[i][1] != 0) close(pipes[i][1]);
printf("Čeká se na ukončení podprocesů.\n");
for (i = 0; i < POOL; i++)
if (pids[i] > 0) {
waitpid(pids[i], &j, 0); /* počkáme na ukončení */
if (WEXITSTATUS(j) != 0) {
status |= 8;
printf("Došlo k chybě v %d. podprocesu.\n", i+1);
}
}
return status;
}
Zdrojový kód názorně ukazuje postup vytvoření podprocesů, výměnu informací s nadřazeným procesem a správné čekání na jejich ukončení.
Nejprve je funkcí pipe vytvořen pár int[2], kde první číslo je vstupní produ a druhé výstupní proud. Ihned následuje fork, který proces rozdvojí, okopíruje všechna data procesu v paměti a též všechny proudy.
Podprocesu je vrácena nula, podle toho jej poznáme. (Svoje číslo proces obvykle na nic nepotřebuje.) Podproces uzavře výstupní proud (je to jeho vlastní výstupní proud, v nadřazeném procesu se nestane nic) a načítá data ze vstupního procesu, které pak zpracovává. Až se data vyčerpají, podproces se ukončí voláním exit.
Nadřazený proces dostane od forku číslo procesu. Uzavře vstupní proud, zpracovává data ze standardního vstupu a posílá je k vyhodnocení podprocesům. (Ono to zjištění DNS někdy trvá docela dost dlouho, pokud máme adres hodně, skutečně se vyplatí jich zpracovávat víc zaráz právě pomocí podprocesů.) Za zmínku ještě stojí, že je dobré si najít podproces, který obslouží požadavek nejdřív – k tomu slouží onen select, který pozná proud připravený k zápisu. Až už na standardním vstupu nic není, uzavřou se výstupní proudy a počká se pomocí waitpid na skončení podprocesů.
select doporučuji použít funkci poll – více v manuálové stránce.
P.P.S.: Jednodušší příklad na fork se nabízí, když člověk hledá funkci spawn… z DOSu či Windows. Proč je tu jen exec…, který proces nahradí jiným programem? Protože je tu fork + exec.
Tiskni
Sdílej: