Společnost Meta na dvoudenní konferenci Meta Connect 2025 představuje své novinky. První den byly představeny nové AI brýle: Ray-Ban Meta (Gen 2), sportovní Oakley Meta Vanguard a především Meta Ray-Ban Display s integrovaným displejem a EMG náramkem pro ovládání.
Po půl roce vývoje od vydání verze 48 bylo vydáno GNOME 49 s kódovým názvem Brescia (Mastodon). S přehrávačem videí Showtime místo Totemu a prohlížečem dokumentů Papers místo Evince. Podrobný přehled novinek i s náhledy v poznámkách k vydání a v novinkách pro vývojáře.
Open source softwarový stack ROCm (Wikipedie) pro vývoj AI a HPC na GPU od AMD byl vydán ve verzi 7.0.0. Přidána byla podpora AMD Instinct MI355X a MI350X.
Byla vydána nová verze 258 správce systému a služeb systemd (GitHub).
Byla vydána Java 25 / JDK 25. Nových vlastností (JEP - JDK Enhancement Proposal) je 18. Jedná se o LTS verzi.
Věra Pohlová před 26 lety: „Tyhle aféry každého jenom otravují. Já bych všechny ty internety a počítače zakázala“. Jde o odpověď na anketní otázku deníku Metro vydaného 17. září 1999 na téma zneužití údajů o sporožirových účtech klientů České spořitelny.
Byla publikována Výroční zpráva Blender Foundation za rok 2024 (pdf).
Byl vydán Mozilla Firefox 143.0. Přehled novinek v poznámkách k vydání a poznámkách k vydání pro vývojáře. Nově se Firefox při ukončování anonymního režimu zeptá, zda chcete smazat stažené soubory. Dialog pro povolení přístupu ke kameře zobrazuje náhled. Obzvláště užitečné při přepínání mezi více kamerami. Řešeny jsou rovněž bezpečnostní chyby. Nový Firefox 143 bude brzy k dispozici také na Flathubu a Snapcraftu.
Byla vydána betaverze Fedora Linuxu 43 (ChangeSet), tj. poslední zastávka před vydáním finální verze, která je naplánována na úterý 21. října.
Multiplatformní emulátor terminálu Ghostty byl vydán ve verzi 1.2 (𝕏, Mastodon). Přehled novinek, vylepšení a nových efektů v poznámkách k vydání.
pid=fork();
for(i=0; i<n; i++){
switch(fork){
case -1: err(...);
case 0: child(i, getpid());
case 1: -zaslani zpravy potomkovi-; wait(&stav);
}
}
int child(int i, pid_t mypid){
printf("%d: %d\n", num, chpid);
(void) signal(SIGUSR1, got_signal);
pause();
exit(0);
}
Tohle nedela vlastne nic, protoze zaroven nevim, jak zjistit pid potomka. fork()
. Za prvé: PID potomka dostane rodič jako návratovou hodnotu funkce fork()
. Za druhé: rodič i potomek pokračují dál návratem z funkce fork()
a wait()
můžete volat kdykoli později, takže vám nic nebrání si naforkovat potomků, kolik budete chtít, a pak na teprve čekat na jejich skončení.
pid=fork();
for(i=0; i<n; i++){
switch(fork){
Nechtěl jsi spíš něco jako toto?:
for(i=0; i<n;; i++){
pid=fork();
switch(pid){
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <errno.h> #include <unistd.h> #include <netdb.h> #include <sys/types.h> #include <sys/socket.h> #include <sys/wait.h> #include <sys/select.h> #include <arpa/inet.h> #ifndef POOL #define POOL 10 #endif int pipes[POOL][2]; /* roury, 0 = nic */ pid_t pids[POOL]; /* podprocesy, 0 = nic */ int main(int argc, char **argv) { int i, j, status = 0; struct in_addr ipv4a; char ipv4as[INET_ADDRSTRLEN], line[100], *p; struct hostent *he = NULL; fd_set fds; for (i = 0; i < POOL; i++) pipes[i][0] = pipes[i][1] = pids[i] = 0; for (i = 0; i < POOL; i++) { /* tvorba podprocesů */ if (pipe(pipes[i]) < 0) { perror("Chyba roury"); break; } if ((pids[i] = fork()) < 0) { perror("Chyba větvení"); break; } if (pids[i] == 0) { /* podproces */ close(pipes[i][1]); /* podproces bude jen číst */ while ((j = read(pipes[i][0], &ipv4a, sizeof(ipv4a))) > 0) { if (inet_ntop(AF_INET, &ipv4a, ipv4as, sizeof(ipv4as)) == NULL) printf("Byla předána chybná adresa.\n"); else if ((he = gethostbyaddr(&ipv4a, sizeof(ipv4a), AF_INET)) != NULL) printf("%s -> %s\n", ipv4as, he->h_name); else printf("Nezjištěn záznam pro %s (#%d - %s)\n", ipv4as, h_errno, h_errno == HOST_NOT_FOUND ? "počítač nenalezen" : h_errno == NO_RECOVERY ? "chyba DNS serveru" : h_errno == TRY_AGAIN ? "zopakovat požadavek" : "chyba"); } if (j < 0) printf("Chyba v %d. procesu: %s\n", i+1, strerror(errno)); close(pipes[i][0]); /* už bylo dočteno */ exit(j == 0 ? 0 : 1); } else close(pipes[i][0]); /* hlavní proces bude jen zapisovat */ } if (i < POOL) status |= 1; else while (!feof(stdin)) { /* načítání adres */ line[0] = '\0'; /* čištění řádku */ if (fgets(line, sizeof(line), stdin) == NULL) /* kontrola chyb */ if (!feof(stdin)) { /* před koncem souboru je to opravdu chyba */ perror("Chyba čtení"); status |= 2; break; } if ((p = strrchr(line, '\n')) != NULL) *p = '\0'; /* vyhodíme '\n' */ if (line[0] == '\0') continue; /* přeskočíme prázdné řádky */ if (inet_pton(AF_INET, line, &ipv4a) <= 0) { /* neplatná adresa */ printf("Adresa '%s' je neplatná.\n", line); status |= 4; } else { /* pošleme požadavek podprocesu */ inet_ntop(AF_INET, &ipv4a, ipv4as, sizeof(ipv4as)); FD_ZERO(&fds); /* vyrobíme nový seznam rour pro výstup */ j = 0; for (i = 0; i < POOL; i++) { FD_SET(pipes[i][1], &fds); if (j < pipes[i][1]) j = pipes[i][1]; /* select chce max. hodnotu */ } select(j+1, NULL, &fds, NULL, NULL); /* najdeme volnou rouru */ for (i = 0; i < POOL; i++) if (FD_ISSET(pipes[i][1], &fds)) { write(pipes[i][1], &ipv4a, sizeof(ipv4a)); /* pošleme požadavek */ break; } } } for (i = 0; i < POOL; i++) if (pipes[i][1] != 0) close(pipes[i][1]); printf("Čeká se na ukončení podprocesů.\n"); for (i = 0; i < POOL; i++) if (pids[i] > 0) { waitpid(pids[i], &j, 0); /* počkáme na ukončení */ if (WEXITSTATUS(j) != 0) { status |= 8; printf("Došlo k chybě v %d. podprocesu.\n", i+1); } } return status; }Zdrojový kód názorně ukazuje postup vytvoření podprocesů, výměnu informací s nadřazeným procesem a správné čekání na jejich ukončení. Nejprve je funkcí
pipe
vytvořen pár int[2]
, kde první číslo je vstupní produ a druhé výstupní proud. Ihned následuje fork
, který proces rozdvojí, okopíruje všechna data procesu v paměti a též všechny proudy.
Podprocesu je vrácena nula, podle toho jej poznáme. (Svoje číslo proces obvykle na nic nepotřebuje.) Podproces uzavře výstupní proud (je to jeho vlastní výstupní proud, v nadřazeném procesu se nestane nic) a načítá data ze vstupního procesu, které pak zpracovává. Až se data vyčerpají, podproces se ukončí voláním exit
.
Nadřazený proces dostane od fork
u číslo procesu. Uzavře vstupní proud, zpracovává data ze standardního vstupu a posílá je k vyhodnocení podprocesům. (Ono to zjištění DNS někdy trvá docela dost dlouho, pokud máme adres hodně, skutečně se vyplatí jich zpracovávat víc zaráz právě pomocí podprocesů.) Za zmínku ještě stojí, že je dobré si najít podproces, který obslouží požadavek nejdřív – k tomu slouží onen select
, který pozná proud připravený k zápisu. Až už na standardním vstupu nic není, uzavřou se výstupní proudy a počká se pomocí waitpid
na skončení podprocesů.
select
doporučuji použít funkci poll
– více v manuálové stránce.
P.P.S.: Jednodušší příklad na fork
se nabízí, když člověk hledá funkci spawn…
z DOSu či Windows. Proč je tu jen exec…
, který proces nahradí jiným programem? Protože je tu fork
+ exec
.
Tiskni
Sdílej: