Byl představen nový Xserver Phoenix, kompletně od nuly vyvíjený v programovacím jazyce Zig. Projekt Phoenix si klade za cíl být moderní alternativou k X.Org serveru.
XLibre Xserver byl 21. prosince vydán ve verzi 25.1.0, 'winter solstice release'. Od založení tohoto forku X.Org serveru se jedná o vůbec první novou minor verzi (inkrementovalo se to druhé číslo v číselném kódu verze).
Wayback byl vydán ve verzi 0.3. Wayback je "tak akorát Waylandu, aby fungoval Xwayland". Jedná se o kompatibilní vrstvu umožňující běh plnohodnotných X11 desktopových prostředí s využitím komponent z Waylandu. Cílem je nakonec nahradit klasický server X.Org, a tím snížit zátěž údržby aplikací X11.
Byla vydána verze 4.0.0 programovacího jazyka Ruby (Wikipedie). S Ruby Box a ZJIT. Ruby lze vyzkoušet na webové stránce TryRuby. U příležitosti 30. narozenin, první veřejná verze Ruby 0.95 byla oznámena 21. prosince 1995, proběhl redesign webových stránek.
Všem čtenářkám a čtenářům AbcLinuxu krásné Vánoce.
Byla vydána nová verze 7.0 linuxové distribuce Parrot OS (Wikipedie). S kódovým názvem Echo. Jedná se o linuxovou distribuci založenou na Debianu a zaměřenou na penetrační testování, digitální forenzní analýzu, reverzní inženýrství, hacking, anonymitu nebo kryptografii. Přehled novinek v příspěvku na blogu.
Vývojáři postmarketOS vydali verzi 25.12 tohoto před osmi lety představeného operačního systému pro chytré telefony vycházejícího z optimalizovaného a nakonfigurovaného Alpine Linuxu s vlastními balíčky. Přehled novinek v příspěvku na blogu. Na výběr jsou 4 uživatelská rozhraní: GNOME Shell on Mobile, KDE Plasma Mobile, Phosh a Sxmo.
Byla vydána nová verze 0.41.0 multimediálního přehrávače mpv (Wikipedie) vycházejícího z přehrávačů MPlayer a mplayer2. Přehled novinek, změn a oprav na GitHubu. Požadován je FFmpeg 6.1 nebo novější a také libplacebo 6.338.2 nebo novější.
Byla vydána nová verze 5.5 (novinky) skriptovacího jazyka Lua (Wikipedie). Po pěti a půl letech od vydání verze 5.4.
Byla vydána nová verze 5.4.0 programu na úpravu digitálních fotografií darktable (Wikipedie). Z novinek lze vypíchnout vylepšenou podporu Waylandu. Nejnovější darktable by měl na Waylandu fungovat stejně dobře jako na X11.
Není-li rozsah uveden (protože se jedná o nepovinný parametr), rozumí se definičním oborem celý obor reálných čísel. Protože však zobrazení reálných čísel v počítači je omezené, jak rozsahem, tak přesností, je třeba v takovém případě aplikovat triky z oblasti numerických metod.Asi nejelegantnější způsob jak se tomu vyhnout by bylo použít GMP, ale je otázka,jestli by to prošlo. Navíc problém je rychlost a paměťová náročnost.
Řešení dotazu:
pokud nedojde k ukončení již dříve z důvodů omezení zobrazení reálných čísel v počítači
1 - exp(8/ε²) exp(-1/(x-c-ε)²) exp(-1/(x-c+ε)²), pro c-ε/2 < x < c+ε/2
h(x) = {
1, jinak
která má pouze jediný kořen c, byť dvojitý (to se dá vylepšit). Funkce h je C∞ v celém reálném oboru, a řešení nelze nalézt jinak než prohledáním všech intervalů délky ε, kterých je samozřejmě nekonečně mnoho.
Potom je samozřejmě možnost projít všech cca 2⁶⁴ representovatelných reálných čísel, to skončí v konečném čase.
------------
Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).
Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...Tak epické to zas není, po nalezení 100 kořenů to má přestat hledat.
Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).Díky, to se určitě hodí.
Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.Leda tak to řešit symbolicky
A díky za navedení na bracketing, snad mi to pomůže při dalším hledání.
Tiskni
Sdílej: