abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
    dnes 20:11 | Komunita

    V Londýně probíhá dvoudenní Ubuntu Summit 25.10. Na programu je řada zajímavých přednášek. Zhlédnout je lze také na YouTube (23. 10. a 24. 10.).

    Ladislav Hagara | Komentářů: 0
    dnes 13:22 | Nová verze

    Gemini CLI umožňuje používání AI Gemini přímo v terminálu. Vydána byla verze 0.10.0.

    Ladislav Hagara | Komentářů: 0
    dnes 12:55 | Pozvánky

    Konference OpenAlt 2025 proběhne již příští víkend 1. a 2. listopadu v Brně. Nabídne přibližně 80 přednášek a workshopů rozdělených do 7 tematických tracků. Program se může ještě mírně měnit až do samotné konference, a to s ohledem na opožděné úpravy abstraktů i případné podzimní virózy. Díky partnerům je vstup na konferenci zdarma. Registrace není nutná. Vyplnění formuláře však pomůže s lepším plánováním dalších ročníků konference.

    Ladislav Hagara | Komentářů: 0
    dnes 05:33 | IT novinky

    Samsung představil headset Galaxy XR se 4K Micro-OLED displeji, procesorem Snapdragon XR2+ Gen 2, 16 GB RAM, 256 GB úložištěm, operačním systémem Android XR a Gemini AI.

    Ladislav Hagara | Komentářů: 2
    dnes 05:22 | Nová verze

    Před konferencí Next.js Conf 2025 bylo oznámeno vydání nové verze 16 open source frameworku Next.js (Wikipedie) pro psaní webových aplikací v Reactu. Přehled novinek v příspěvku na blogu.

    Ladislav Hagara | Komentářů: 0
    včera 23:33 | Komunita

    Sovereign Tech Fund oznámil finanční podporu následujících open source projektů: Scala, SDCC, Let's Encrypt, Servo, chatmail, Drupal, Fedify, openprinting, PHP, Apache Arrow, OpenSSL, R Project, Open Web Docs, conda, systemd a phpseclib.

    Ladislav Hagara | Komentářů: 0
    včera 13:11 | Nová verze

    Bylo vydáno OpenBSD 7.8. S předběžnou podporou Raspberry Pi 5. Opět bez písničky.

    Ladislav Hagara | Komentářů: 0
    včera 05:44 | Nová verze Ladislav Hagara | Komentářů: 2
    včera 05:22 | Bezpečnostní upozornění

    Byly publikovány informace o kritické zranitelnosti v knihovně pro Rust async-tar a jejích forcích tokio-tar, krata-tokio-tar a astral-tokio-tar. Jedná se o zranitelnost CVE-2025-62518 s CVSS 8.1. Nálezci je pojmenovali TARmageddon.

    Ladislav Hagara | Komentářů: 5
    21.10. 23:15 | Nová verze

    AlmaLinux přinese s verzí 10.1 podporu btrfs. XFS bude stále jako výchozí filesystém, ale instalátor nabídne i btrfs. Více informací naleznete v oficiálním oznámení.

    Max | Komentářů: 3
    Jaké řešení používáte k vývoji / práci?
     (36%)
     (49%)
     (20%)
     (20%)
     (23%)
     (18%)
     (21%)
     (18%)
     (18%)
    Celkem 261 hlasů
     Komentářů: 14, poslední 14.10. 09:04
    Rozcestník

    Dotaz: Numerické řešení rovnic

    stativ avatar 31.12.2009 09:52 stativ | skóre: 54 | blog: SlaNé roury
    Numerické řešení rovnic
    Přečteno: 975×
    Na rovinu přiznám, že je to zadání semestrálky, které jsem si vybral jen proto, že o tématu nevím vůbec nic. V zásadě jde o to vytvořit program ,co vypočítá všechny kořeny rovnice jedné proměnné v oboru reálných čísel. Našel jsem si k tomu spoustu materiálů (krásný je třeba úvod do numerických metod).

    Už jsem si některé z těch metod zkoušel a fungují docela pěkně (i když se mi stalo, že jednou jsem se s Newtonem jsem zasekl, nejspíš v nějakém lokálním minimu).

    Co mi ale není jasné je, jak řešit větší množství kořenů:
    1. tj. jak určím prvotní odhady kořenů pro Newtonovu metodu tak, abych se dostal ke všem kořenům a ne jenom jednomu?
    2. tj. jak určím, kde je funkce kladná a záporná bez „brute force“ pro jiné metody? Tady mě nejdřív napadlo nejdřív vyřešit, kdy je derivace nula, ale to je zase ten samý problém.
    PS.: Co myslí za triky v
    Není-li rozsah uveden (protože se jedná o nepovinný parametr), rozumí se definičním oborem celý obor reálných čísel. Protože však zobrazení reálných čísel v počítači je omezené, jak rozsahem, tak přesností, je třeba v takovém případě aplikovat triky z oblasti numerických metod.
    Asi nejelegantnější způsob jak se tomu vyhnout by bylo použít GMP, ale je otázka,jestli by to prošlo. Navíc problém je rychlost a paměťová náročnost.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk

    Řešení dotazu:


    Odpovědi

    stativ avatar 31.12.2009 09:55 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    K tomu PSku: asi to není kritické, protože dále je možno se dočíst:
    pokud nedojde k ukončení již dříve z důvodů omezení zobrazení reálných čísel v počítači
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    31.12.2009 12:03 l4m4
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...

    Nebudu řešit evidentní sin(x)=0, stačí rovnice h(x) = 0 kde
             1 - exp(8/ε²) exp(-1/(x-c-ε)²) exp(-1/(x-c+ε)²),  pro c-ε/2 < x < c+ε/2
    h(x) = {
             1,                                                jinak
    
    která má pouze jediný kořen c, byť dvojitý (to se dá vylepšit). Funkce h je C∞ v celém reálném oboru, a řešení nelze nalézt jinak než prohledáním všech intervalů délky ε, kterých je samozřejmě nekonečně mnoho.

    Potom je samozřejmě možnost projít všech cca 2⁶⁴ representovatelných reálných čísel, to skončí v konečném čase.

    ------------

    Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).

    Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
    stativ avatar 31.12.2009 14:31 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...
    Tak epické to zas není, po nalezení 100 kořenů to má přestat hledat.

    Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).
    Díky, to se určitě hodí.
    Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
    Leda tak to řešit symbolicky ;-) A díky za navedení na bracketing, snad mi to pomůže při dalším hledání.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    31.12.2009 12:56 peter
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    1, ten prvotny odhad by sa mohol dat spravit pomocou bisekce (alebo teda aspon urcit ci koren je medzi x1, x2)
    stativ avatar 31.12.2009 14:33 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Ale jestli jsem to pochopil správně, tak na bisekci musím znát x_1, x_2 taková, že mají opačná znaménka. Což je problém č. 2.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    1.1.2010 12:04 tomas
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    To se da resit stochasticky tj. pomoci nahodneho dosazovani. Generuj nahodna cisla z intervalu <-c,c>, kde c se se po kazdem pokusu zvetsi napr. jako c = c * (1 + epsilon). Jakmile najdes dve x s ruznym znamenkem f(x), lze pouzit puleni intervalu. Pak bych si zvolil nejaky epsilon, ktery mi rekne, jak daleko od sebe musi byt dva koreny. Pokud pri puleni intervalu skonverguju do nejakeho takoveho epsilon okoli jiz nalezeneho bodu, vypocet zrusim a zkousim hledat dal. Tahle uloha se neda vyresit nijak elegatne, aniz bys o zadane funkci resp. o rozdeleni korenu neco vedel.
    stativ avatar 1.1.2010 12:44 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Jo, něco takového jsem našel (pozor, obsahuje to hnusné DRM) v knize Numerical Recipes. Díky všem za rady.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.