Máirín Duffy a Brian Smith v článku pro Fedora Magazine ukazují použití LLM pro diagnostiku systému (Fedora Linuxu) přes Model Context Protocol od firmy Anthropic. I ukázkové výstupy v samotném článku obsahují AI vygenerované nesmysly, např. doporučení přeinstalovat balíček pomocí správce balíčků APT z Debianu místo DNF nativního na Fedoře.
Projekt D7VK dospěl do verze 1.0. Jedná se o fork DXVK implementující překlad volání Direct3D 7 na Vulkan. DXVK zvládá Direct3D 8, 9, 10 a 11.
Byla vydána nová verze 2025.4 linuxové distribuce navržené pro digitální forenzní analýzu a penetrační testování Kali Linux (Wikipedie). Přehled novinek se seznamem nových nástrojů v oficiálním oznámení na blogu.
Národní úřad pro kybernetickou a informační bezpečnost (NÚKIB) zveřejnil Národní politiku koordinovaného zveřejňování zranitelností (pdf), jejímž cílem je nejen zvyšování bezpečnosti produktů informačních a komunikačních technologií (ICT), ale také ochrana objevitelů zranitelností před negativními právními dopady. Součástí je rovněž vytvoření „koordinátora pro účely CVD“, jímž je podle nového zákona o kybernetické … více »
Vývojáři KDE oznámili vydání balíku aplikací KDE Gear 25.12. Přehled novinek i s náhledy a videi v oficiálním oznámení.
Společnost System76 vydala Pop!_OS 24.04 LTS s desktopovým prostředím COSMIC. Videoukázky na YouTube.
Byla vydána verze 1.92.0 programovacího jazyka Rust (Wikipedie). Podrobnosti v poznámkách k vydání. Vyzkoušet Rust lze například na stránce Rust by Example.
Free Software Foundation zveřejnila ocenění Free Software Awards za rok 2024. Oceněni byli Andy Wingo, jeden ze správců GNU Guile, Alx Sa za příspěvky do Gimpu a Govdirectory jako společensky prospěšný projekt.
Bylo vydáno Eclipse IDE 2025-12 aneb Eclipse 4.38. Představení novinek tohoto integrovaného vývojového prostředí také na YouTube.
U příležitosti oslav osmi let prací na debianím balíčku vyšlo GPXSee 15.6. Nová verze přináší především podporu pro geotagované MP4 soubory, včetně GoPro videí. Kdo nechce čekat, až nová verze dorazí do jeho distribuce, nalezne zdrojové kódy na GitHubu.
Není-li rozsah uveden (protože se jedná o nepovinný parametr), rozumí se definičním oborem celý obor reálných čísel. Protože však zobrazení reálných čísel v počítači je omezené, jak rozsahem, tak přesností, je třeba v takovém případě aplikovat triky z oblasti numerických metod.Asi nejelegantnější způsob jak se tomu vyhnout by bylo použít GMP, ale je otázka,jestli by to prošlo. Navíc problém je rychlost a paměťová náročnost.
Řešení dotazu:
pokud nedojde k ukončení již dříve z důvodů omezení zobrazení reálných čísel v počítači
1 - exp(8/ε²) exp(-1/(x-c-ε)²) exp(-1/(x-c+ε)²), pro c-ε/2 < x < c+ε/2
h(x) = {
1, jinak
která má pouze jediný kořen c, byť dvojitý (to se dá vylepšit). Funkce h je C∞ v celém reálném oboru, a řešení nelze nalézt jinak než prohledáním všech intervalů délky ε, kterých je samozřejmě nekonečně mnoho.
Potom je samozřejmě možnost projít všech cca 2⁶⁴ representovatelných reálných čísel, to skončí v konečném čase.
------------
Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).
Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...Tak epické to zas není, po nalezení 100 kořenů to má přestat hledat.
Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).Díky, to se určitě hodí.
Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.Leda tak to řešit symbolicky
A díky za navedení na bracketing, snad mi to pomůže při dalším hledání.
Tiskni
Sdílej: