abclinuxu.cz AbcLinuxu.cz itbiz.cz ITBiz.cz HDmag.cz HDmag.cz abcprace.cz AbcPráce.cz
AbcLinuxu hledá autory!
Inzerujte na AbcPráce.cz od 950 Kč
Rozšířené hledání
×
    dnes 12:11 | IT novinky

    Google představil platformu Code Wiki pro rychlejší porozumění existujícímu kódu. Code Wiki pomocí AI Gemini udržuje průběžně aktualizovanou strukturovanou wiki pro softwarové repozitáře. Zatím jenom pro veřejné. V plánu je rozšíření Gemini CLI také pro soukromé a interní repozitáře.

    Ladislav Hagara | Komentářů: 1
    včera 14:22 | Bezpečnostní upozornění

    V přihlašovací obrazovce LightDM KDE (lightdm-kde-greeter) byla nalezena a již opravena eskalace práv (CVE-2025-62876). Detaily v příspěvku na blogu SUSE Security.

    Ladislav Hagara | Komentářů: 5
    včera 13:22 | Nová verze

    Byla vydána nová verze 7.2 živé linuxové distribuce Tails (The Amnesic Incognito Live System), jež klade důraz na ochranu soukromí uživatelů a anonymitu. Tor Browser byl povýšen na verzi 15.0.1. Další novinky v příslušném seznamu.

    Ladislav Hagara | Komentářů: 0
    včera 10:33 | IT novinky

    Česká národní banka (ČNB) nakoupila digitální aktiva založená na blockchainu za milion dolarů (20,9 milionu korun). Na vytvořeném testovacím portfoliu, jehož součástí jsou bitcoin, stablecoiny navázané na dolar a tokenizované depozitum, chce získat praktickou zkušenost s držením digitálních aktiv. Portfolio nebude součástí devizových rezerv, uvedla dnes ČNB v tiskové zprávě.

    Ladislav Hagara | Komentářů: 40
    včera 03:22 | IT novinky

    Apple představil iPhone Pocket pro stylové přenášení iPhonu. iPhone Pocket vzešel ze spolupráce značky ISSEY MIYAKE a Applu a jeho tělo tvoří jednolitý 3D úplet, který uschová všechny modely iPhonu. iPhone Pocket s krátkým popruhem se prodává za 149,95 dolarů (USA) a s dlouhým popruhem za 229,95 dolarů (USA).

    Ladislav Hagara | Komentářů: 17
    včera 02:33 | Nová verze

    Byla vydána nová stabilní verze 7.7 webového prohlížeče Vivaldi (Wikipedie). Postavena je na Chromiu 142. Přehled novinek i s náhledy v příspěvku na blogu.

    Ladislav Hagara | Komentářů: 0
    13.11. 22:11 | Nová verze

    Společnost Epic Games vydala verzi 5.7 svého proprietárního multiplatformního herního enginu Unreal Engine (Wikipedie). Podrobný přehled novinek v poznámkách k vydání.

    Ladislav Hagara | Komentářů: 2
    13.11. 16:22 | Bezpečnostní upozornění

    Intel vydal 30 upozornění na bezpečnostní chyby ve svých produktech. Současně vydal verzi 20251111 mikrokódů pro své procesory.

    Ladislav Hagara | Komentářů: 0
    13.11. 15:33 | Nová verze

    Byla vydána říjnová aktualizace aneb nová verze 1.106 editoru zdrojových kódů Visual Studio Code (Wikipedie). Přehled novinek i s náhledy a videi v poznámkách k vydání. Ve verzi 1.106 vyjde také VSCodium, tj. komunitní sestavení Visual Studia Code bez telemetrie a licenčních podmínek Microsoftu.

    Ladislav Hagara | Komentářů: 1
    13.11. 12:11 | Komunita

    Canonical pro své zákazníky, předplatitele Ubuntu Pro, prodloužil podporu Ubuntu LTS z 12 let na 15 let (Legacy add-on). Týká se verzí od 14.04 (Trusty Tahr).

    Ladislav Hagara | Komentářů: 2
    Jaké řešení používáte k vývoji / práci?
     (35%)
     (47%)
     (18%)
     (18%)
     (23%)
     (15%)
     (22%)
     (15%)
     (16%)
    Celkem 353 hlasů
     Komentářů: 16, poslední 12.11. 18:21
    Rozcestník

    Dotaz: Numerické řešení rovnic

    stativ avatar 31.12.2009 09:52 stativ | skóre: 54 | blog: SlaNé roury
    Numerické řešení rovnic
    Přečteno: 982×
    Na rovinu přiznám, že je to zadání semestrálky, které jsem si vybral jen proto, že o tématu nevím vůbec nic. V zásadě jde o to vytvořit program ,co vypočítá všechny kořeny rovnice jedné proměnné v oboru reálných čísel. Našel jsem si k tomu spoustu materiálů (krásný je třeba úvod do numerických metod).

    Už jsem si některé z těch metod zkoušel a fungují docela pěkně (i když se mi stalo, že jednou jsem se s Newtonem jsem zasekl, nejspíš v nějakém lokálním minimu).

    Co mi ale není jasné je, jak řešit větší množství kořenů:
    1. tj. jak určím prvotní odhady kořenů pro Newtonovu metodu tak, abych se dostal ke všem kořenům a ne jenom jednomu?
    2. tj. jak určím, kde je funkce kladná a záporná bez „brute force“ pro jiné metody? Tady mě nejdřív napadlo nejdřív vyřešit, kdy je derivace nula, ale to je zase ten samý problém.
    PS.: Co myslí za triky v
    Není-li rozsah uveden (protože se jedná o nepovinný parametr), rozumí se definičním oborem celý obor reálných čísel. Protože však zobrazení reálných čísel v počítači je omezené, jak rozsahem, tak přesností, je třeba v takovém případě aplikovat triky z oblasti numerických metod.
    Asi nejelegantnější způsob jak se tomu vyhnout by bylo použít GMP, ale je otázka,jestli by to prošlo. Navíc problém je rychlost a paměťová náročnost.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk

    Řešení dotazu:


    Odpovědi

    stativ avatar 31.12.2009 09:55 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    K tomu PSku: asi to není kritické, protože dále je možno se dočíst:
    pokud nedojde k ukončení již dříve z důvodů omezení zobrazení reálných čísel v počítači
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    31.12.2009 12:03 l4m4
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...

    Nebudu řešit evidentní sin(x)=0, stačí rovnice h(x) = 0 kde
             1 - exp(8/ε²) exp(-1/(x-c-ε)²) exp(-1/(x-c+ε)²),  pro c-ε/2 < x < c+ε/2
    h(x) = {
             1,                                                jinak
    
    která má pouze jediný kořen c, byť dvojitý (to se dá vylepšit). Funkce h je C∞ v celém reálném oboru, a řešení nelze nalézt jinak než prohledáním všech intervalů délky ε, kterých je samozřejmě nekonečně mnoho.

    Potom je samozřejmě možnost projít všech cca 2⁶⁴ representovatelných reálných čísel, to skončí v konečném čase.

    ------------

    Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).

    Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
    stativ avatar 31.12.2009 14:31 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...
    Tak epické to zas není, po nalezení 100 kořenů to má přestat hledat.

    Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).
    Díky, to se určitě hodí.
    Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
    Leda tak to řešit symbolicky ;-) A díky za navedení na bracketing, snad mi to pomůže při dalším hledání.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    31.12.2009 12:56 peter
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    1, ten prvotny odhad by sa mohol dat spravit pomocou bisekce (alebo teda aspon urcit ci koren je medzi x1, x2)
    stativ avatar 31.12.2009 14:33 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Ale jestli jsem to pochopil správně, tak na bisekci musím znát x_1, x_2 taková, že mají opačná znaménka. Což je problém č. 2.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk
    1.1.2010 12:04 tomas
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    To se da resit stochasticky tj. pomoci nahodneho dosazovani. Generuj nahodna cisla z intervalu <-c,c>, kde c se se po kazdem pokusu zvetsi napr. jako c = c * (1 + epsilon). Jakmile najdes dve x s ruznym znamenkem f(x), lze pouzit puleni intervalu. Pak bych si zvolil nejaky epsilon, ktery mi rekne, jak daleko od sebe musi byt dva koreny. Pokud pri puleni intervalu skonverguju do nejakeho takoveho epsilon okoli jiz nalezeneho bodu, vypocet zrusim a zkousim hledat dal. Tahle uloha se neda vyresit nijak elegatne, aniz bys o zadane funkci resp. o rozdeleni korenu neco vedel.
    stativ avatar 1.1.2010 12:44 stativ | skóre: 54 | blog: SlaNé roury
    Rozbalit Rozbalit vše Re: Numerické řešení rovnic
    Jo, něco takového jsem našel (pozor, obsahuje to hnusné DRM) v knize Numerical Recipes. Díky všem za rady.
    Ať sežeru elfa i s chlupama!!! ljirkovsky.wordpress.com stativ.tk

    Založit nové vláknoNahoru

    Tiskni Sdílej: Linkuj Jaggni to Vybrali.sme.sk Google Del.icio.us Facebook

    ISSN 1214-1267   www.czech-server.cz
    © 1999-2015 Nitemedia s. r. o. Všechna práva vyhrazena.