Netwide Assembler (NASM) byl vydán v nové major verzi 3.00. Přehled novinek v poznámkách k vydání v aktualizované dokumentaci.
Linuxová distribuce Frugalware (Wikipedie) ke konci roku 2025 oficiálně končí.
Byla vydána nová verze 3.0.6 svobodné aplikace pro úpravu a vytváření rastrové grafiky GIMP (GNU Image Manipulation Program). Přehled novinek v oznámení o vydání a v souboru NEWS na GitLabu. Nový GIMP bude brzy k dispozici také na Flathubu.
Americký výrobce čipů AMD uzavřel s americkou společností OpenAI smlouvu na několikaleté dodávky vyspělých mikročipů pro umělou inteligenci (AI). Součástí dohody je i předkupní právo OpenAI na přibližně desetiprocentní podíl v AMD.
Byla vydána nová verze 10.1 sady aplikací pro SSH komunikaci OpenSSH. Uživatel je nově varován, když se nepoužívá postkvantovou výměnu klíčů.
Byly zpracovány a na YouTube zveřejněny videozáznamy z konference LinuxDays 2025.
Na konferenci LinuxDays 2025 byl oficiálně představen nový router Turris Omnia NG.
Přímý přenos (YouTube) z konference LinuxDays 2025, jež probíhá tento víkend v Praze v prostorách FIT ČVUT. Na programu je spousta zajímavých přednášek.
V únoru loňského roku Úřad pro ochranu osobních údajů pravomocně uložil společnosti Avast Software pokutu 351 mil. Kč za porušení GDPR. Městský soud v Praze tuto pokutu na úterním jednání zrušil. Potvrdil ale, že společnost Avast porušila zákon, když skrze svůj zdarma dostupný antivirový program sledovala, které weby jeho uživatelé navštěvují, a tyto informace předávala dceřiné společnosti Jumpshot. Úřad pro ochranu osobních údajů
… více »Není-li rozsah uveden (protože se jedná o nepovinný parametr), rozumí se definičním oborem celý obor reálných čísel. Protože však zobrazení reálných čísel v počítači je omezené, jak rozsahem, tak přesností, je třeba v takovém případě aplikovat triky z oblasti numerických metod.Asi nejelegantnější způsob jak se tomu vyhnout by bylo použít GMP, ale je otázka,jestli by to prošlo. Navíc problém je rychlost a paměťová náročnost.
Řešení dotazu:
pokud nedojde k ukončení již dříve z důvodů omezení zobrazení reálných čísel v počítači
1 - exp(8/ε²) exp(-1/(x-c-ε)²) exp(-1/(x-c+ε)²), pro c-ε/2 < x < c+ε/2 h(x) = { 1, jinakkterá má pouze jediný kořen c, byť dvojitý (to se dá vylepšit). Funkce h je C∞ v celém reálném oboru, a řešení nelze nalézt jinak než prohledáním všech intervalů délky ε, kterých je samozřejmě nekonečně mnoho. Potom je samozřejmě možnost projít všech cca 2⁶⁴ representovatelných reálných čísel, to skončí v konečném čase. ------------ Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit). Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.
Taková velkolepá zadání miluju. Program, který skutečně nalezene všechny kořeny f(x) = 0 v celém reálném oboru, prokazatelně nikdy neskončí ani při dost silných podmínkách na funkci (kvůli nemožnosti zjistit, že už nalezl všechny), takže program while(1){} postačí úplně stejně...Tak epické to zas není, po nalezení 100 kořenů to má přestat hledat.
Teď něco trochu praktického: kořene a se po nalezení lze zbavit řešením f(x)/(x - a) = 0 namísto f(x) = 0, ovšem numericky se to samozřejmě rozesere v okolí bodu a (hrubou silou to lze spravit zvýšením přesnosti až na dvojnásobek) a přímo v něm (lze ošetřit).Díky, to se určitě hodí.
Co je ale skutečně zásadní problém, je že při sudém počtu kořenů v [pod]intervalu neexistuje 100% fungující algoritmus pro bracketing (viz příklad s h(x) výše), takže můžeš dělat různé věci, ale vždycky se najde protipříklad, kdy to vůbec nezjistí, že funkce nějaké kořeny má.Leda tak to řešit symbolicky
Tiskni
Sdílej: